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Abstract

Fast Fourier Transforms(FFTs), particularly over finite fields, have a main role in a large

set of applications in the fields of signal and image processing, coding and cryptography.

The computation of additive FFTs over finite fields is considered as a simpler and more

scalable method than multiplicative FFTs due to the additive and recursive structure

of finite fields. In this work we present an implementation of an algorithm to compute

additive FFTs over finite fields of characteristic two – “binary fields” – to evaluate and

interpolate polynomials of high degree over large affine subspaces. While previous works

were applied only to linear subspaces, we apply a small modification to an existing

algorithm to compute additive FFTs over affine subspaces as well. We present a parallel

implementation of this algorithm for the GPU architecture and discuss its performance.

The FFT algorithm relies on an implementation of finite field arithmetics. Binary

fields are used in a variety of applications in cryptography and data storage. Mul-

tiplication of two finite field elements is a fundamental operation and a well-known

computational bottleneck in many of these applications, as they often require multiplica-

tion of a large number of elements. In this work we focus on accelerating multiplication

in “large” binary fields of sizes greater than 232. We devise a new parallel algorithm opti-

mized for execution on GPUs. This algorithm makes it possible to multiply large number

of finite field elements, and achieves high performance via bit-slicing and fine-grained

parallelization.

The key to the efficient implementation of the algorithm is a novel performance

optimization methodology we call the register cache. This methodology speeds up an

algorithm that caches its input in shared memory by transforming the code to use

per-thread registers instead. We show how to replace shared memory accesses with

the shuffle() intra-warp communication instruction, thereby significantly reducing or

even eliminating shared memory accesses. We thoroughly analyze the register cache

approach and characterize its benefits and limitations.

We apply the register cache methodology to the implementation of the binary finite

field multiplication algorithm on GPUs. We achieve up to 138× speedup for fields of

size 232 over the popular, highly optimized Number Theory Library (NTL) [V. 03],

which uses the specialized CLMUL CPU instruction, and over 30× for larger fields of size

below 2256. Our register cache implementation enables up to 50% higher performance

compared to the traditional shared-memory based design.

1
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Chapter 1

Introduction

Motivation

Interactive proofs (IP) were introduced to the world by Babai and Moran [L. 88] and

by Goldwasser et al. [S. 89]. In an interactive proof, a protocol takes place between two

main entities, a computationally-unbounded Prover and a computationally-bounded

Verifier. Along the protocol the prover tries to prove a certain claim to the verifier,

while the verifier has to verify the prover’s proof using a probabilistic procedure. He

can also ask the prover some questions regarding his proof, get the prover’s answers

and so on. After getting all the information he needs, the verifier can either accept or

reject the proof.

A special kind of IP protocols are called PCP-protocols [L. 90,L. 91,S. 98,AS98]

in which the verifier does not read the whole proof given to him by the prover, but

only a small and negligible part of it and decides whether to accept or reject the proof

according to the part he has read.

A major practical implication of the theorem is the ability to succinctly prove the

computational integrity of a program running in time T (n) using a PCP protocol with

proof of length poly (T (n)) is presented in [L. 90], [L. 91], [Kil92] and [Mic94].

The application motivating this work is to efficiently implement a family of probabilis-

tically checkable proofs (PCP) of quasi-linear length, based on the work of Ben-Sasson

and Sudan [E. 08]. This application is envisioned to enable verifiable execution, whereby

a client that offloads a computation to untrusted computing resources, e.g., to a cloud

system, receives a proof which attests that the results have indeed been produced by the

execution of the offloaded computation. This property is also known as computational

integrity and can be proved using PCPs in which the prover (e.g. the cloud system)

proves the computational integrity of a given computation to a verifier (e.g. a client).

Since the prover is computationally unbounded, his role in the PCP protocol can be,

theoretically, expensive in terms of computation. And in practice the prover’s running

time (and space consumption) turns out to be the main bottleneck preventing the system

from running in feasible time. The prover executes a program and wishes to prove the

3
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computational integrity of its execution to the verifier. To do that it has to encode the

execution trace using error correcting codes that possess some interesting properties.

It is known that error correcting codes that are based on low-degree polynomials have

these properties. Particularly, Ben-Sasson and Sudan in their PCP [E. 08] have used

Reed-Solomon codes [I. 60] that are based on univariate polynomials. With other

additional restrictions it was required that the Reed-Solomon codes will be evaluated

over affine-spaces in finite fields of characteristic-2 or characteristic-q where q − 1 has

small prime factors. The execution encoding algorithm is based on the evaluation and

interpolation of polynomials over affine subspaces. These can be done efficiently using

additive FFTs and inverse FFTs (IFFTs) and the implementation of them in finite

fields of characteristic two is the scope of this work.

Fast Fourier Transforms

Fast Fourier Transforms(FFTs), particularly over finite fields, have a main role in

a large set of applications in the fields of signal and image processing, coding and

cryptography [D. 82,R. 02,F. 95,M. ,Wel67,LRRY78,J. 98b].

The discrete Fast-Fourier-Transform (DFFT) algorithm for finite fields takes as

input a polynomial P (x) over a finite field GF
(
pk
)

and an a set of finite field elements

and calculates P (α) for all α in that set. The inverse discrete fast Fourier transform

(IDFFT) algorithm takes as input a function f : S → GF
(
pk
)

where S is a set of

elements from GF
(
pk
)

of size n and calculates the interpolation polynomial P (x) over

GF
(
pk
)

of degree n− 1 such that for each α ∈ S : P (α) = f(α).

In 1965 the study of the implementation of DFFT algorithms has began by James

Cooley and John Tukey who published in their historical paper [J. 65] a full description

of an implementation for a DFFT algorithm known to Gauss [Gau66]. This algorithm

was a multiplicative-FFT, as evaluating a polynomial over a set that is a multiplicative

group and by that utilizing some of the multiplicative properties of that group. In finite

fields of low characteristic (e.g. GF (2n) there are also additive subgroups over which

DFFT algorithm can work. These algorithms, known as additive-DFFTs, evaluate

a polynomial over a linear subspace. The computation of additive DFFTs in finite

fields over affine subspaces is considered as a simpler and more scalable method than

multiplicative DFFTs due to the additive and recursive structure of subspaces in finite

fields. In this work we focus on the implementation of additive DFFTs and additive

IDFFTs to which we will simply refer as FFTs and IFFTs, as non-discrete FFTs are

out of the scope of this work. The first additive FFT / IFFT algorithm for a subspace

of size n was the algorithm of Von-Zur-Gather and Gerhard that was published in [J.

03]. This algorithm performs O(n · log2 n) finite field multiplications and additions. In

practice, finite field multiplication, is much slower and consumes and might consume a

large portion of the running time. Therefore, we wish to find an FFT algorithm that

achieves two goals,

4
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1. Minimizes the number of finite-field multiplications

2. Minimize the time that each multiplication takes.

In this work we present an adaptation of Gao and Matteer’s additive FFT and IFFT

algorithm to affine subspaces over finite fields of characteristic two [S. 10] with a smaller

number of finite field multiplications of O(n · log n), compare to Von-Zur-Gather and

Gerhard’s algorithm.

We present an implementation of this algorithm to the GPU architectures and

evaluate its performance. We implemented a CPU version of the algorithm as well.

However, the full details of the implementation of the CPU algorithm is out of the scope

of this work and we focus on the GPU implementation.

For completeness, we clarify that the CPU implementation of FFT achieves good

running times and can evaluate polynomials of degree 230 over 230 elements in less than

20 minutes in our benchmark using a single thread. However, it scales badly on a high

number of CPUs. The reason of this lack of scalability on CPU is left out of the scope

of this work.

The GPU implementation gives more than 16x throughput compared to the serial

CPU implementation. These implementations’ performance heavily relies on the exis-

tence of efficient finite field multiplication an the implementation of such on the GPU

architecture is the main focus of this work.

Finite Fields

Except for additive FFTs, binary fields have numerous applications in cryptography

and data storage. For instance, the Advanced Encryption Standard (AES) [J. 98a]

uses GF
(
28
)
, as does the error correction scheme used on Compact Discs (CDs) and

Digital Versatile Discs (DVDs). Large fields are the basis for distributed storage systems

like those used by Google and Amazon, which employ fields of size 232, 264 and 2128 to

ensure secure and reliable storage of data on multiple disks [J. 12]. They are also the

basis for the application motivating this work: an efficient implementation of a family

of probabilistically checkable proofs (PCP) of quasi-linear length [E. 08]. PCPs require

very large binary fields: most of our work focuses on GF
(
232
)

and GF
(
264
)

but we also

support fields of up to GF
(
22048

)
. Because all the applications mentioned above need

to perform multiplication of a large number of finite field elements, their performance is

dominated by the cost of finite field multiplication, motivating the never-ending quest

for more efficient implementations of this fundamental arithmetic operation.

In this work we focus on accelerating finite field multiplication for large binary

extension fields of size larger than GF
(
232
)

on GPUs, where field elements are represented

using a standard basis (cf. Chapter 2 for definitions). The main computational bottleneck

in this case is the multiplication of polynomials over GF(2), that is, polynomials with

{0, 1}-coefficients. The challenge posed by polynomial multiplication operations over

5
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GF(2) has led Intel and AMD to add an instruction set extension CLMUL to support it

in hardware.

We devise a novel parallel algorithm for multiplication in large binary extension fields

on GPUs, which significantly outperforms the dedicated CPU hardware implementation.

The algorithm is based on two main ideas: First, we apply bit-slicing, enabling a single

thread to perform 32 multiplications in parallel. As a result, all the arithmetic operations

involved in multiplication are performed on 32 bits together instead of a single bit at a

time for single multiplication, therefore matching the width of hardware registers and

enabling full ALU utilization. Second, the computation of a single multiplication is

further parallelized in a fine-grained manner to eliminate execution divergence among

the participating threads. This critical step allows these computations to be mapped to

the threads of a single GPU warp, whose threads are executed in lock-step.

We then focus on an implementation of the algorithm on modern NVIDIA GPUs.

The key to implementation efficiency is a novel optimization technique that we call the

register cache. The register cache enables us to use per-thread registers in conjunction

with the shuffle() intrinsics, that enables intra-warp sharing of register values among

threads, to construct a register-based cache for threads in a single warp. This cache

serves the same purpose as the on-die shared memory, but is much faster thanks to higher

bandwidth and reduced synchronization overhead. We propose a general methodology

for transforming a traditional algorithm that stores its inputs in shared memory into a

potentially more efficient one that uses private per-thread registers to cache the input

for the warp’s threads. We thoroughly study the benefits and limitations of the register

cache approach on the example of a well-known k-Stencil kernel.

Finally, we apply the register cache methodology to optimize the implementation

of the finite field multiplication algorithm for GF
(
2N
)
, where N=32,. . . ,2048. The

primary challenge is to scale the efficient single-warp implementation to larger fields

while retaining the performance benefits of the register cache methodology. We analyze

several design options, and apply an algorithm that uses a low-degree multiplication as

a building block for multiplication in larger fields.

We evaluate our implementation across a variety of field and input sizes using

NVIDIA Titan-X GPU with 12GB of memory, and compare it to a highly optimized

CPU version of a popular Number Theory Library (NTL) [V. 03] running on a single

core of Intel® Xeon® CPU E5-2620 v2 @ 2.10GHz that uses the Intel’s CLMUL CPU

instruction set extension. Our optimized implementation that uses register cache is up to

138× faster than NTL for GF
(
232
)

when multiplying more than 225 finite field elements.

The register cache approach enables us to speed up the original shared memory version

by about 50% over all field sizes.

Our contributions in this thesis are as follows:

1. A novel algorithm for polynomial multiplication over GF(2) on GPUs,

2. A general optimization methodology for using GPU registers as an intra-warp

user-managed cache, along with an in depth analysis of this approach and its

6
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application to polynomial multiplication.

3. Efficient GPU finite field multiplication that is up to two orders of magnitude

faster in fields (GF
(
232
)
) than the CPU implementation that uses the specialized

hardware instruction.

4. Efficient parallel implementation on CPU and cuda-GPU architectures of the

additive FFT and inverse FFT algorithms.

This work is organized as follows. In chapter 2 we give some introductory background

information on the theory of finite fields. In chapter 3 we present the problem of finite

field multiplication in binary fields and discuss some previous results in that field. We

also present the FFT algorithm which we implement in this work. In chapter 4 we

briefly present the outlines of our CPU implementation of the FFT algorithm. Chapter

5 introduces the reader to the architecture and computational model of the GPU. In

chapter 5.2 we introduce the Register Cache methodology to accelerate computation

on GPU via caching values in registers. A small use-case example is given in which

the benefits of this methodology are present. In chapter 6 we apply the register cache

methodology on the multiplication of elements in binary fields. Chapter 7 discusses

the implementation of the FFT algorithm in cuda-GPUs. Chapter 8 presents the

performance evaluation of our finite field multiplication and FFT algorithms. Main

conclusions and open questions for further research are given at chapter 9.

Related work

2-gapped polynomials The CPU implementation of NTL [V. 03] for the multi-

plication in binary fields uses the CLMUL [G. 14] instruction and employs 2-gapped

polynomials to replace reduction with multiplications. We apply a similar algorithm in

our work.

SIMD and bit-slicing The CPU SIMD instructions have been used to perform bit-

slicing to parallelize GF(2n) multiplication [J. 13]. Their implementation, however, is

limited to small fields (up to GF
(
232
)
). The GPU architecture suits SIMD computation

and can provide the same functionality as the CPU SIMD instruction set [S. 11]. The

proposed implementation is, however, also limited to small fields (e.g GF
(
216
)
). Our

implementation applies to larger fields.

Finite field multiplication on GPUs The previous works [J. 13,S. 11] are limited

to fields of size smaller than 232. Particularly, Plank [J. 13] shows a CPU implementation

that deals with computing a product of multiple elements by a single scalar, using

scalar-dependent pre-computed lookup tables. Our work focuses on multiplying many

pairs of arbitrary elements, therefore the lookup table approach is inapplicable.

Cohen et al. [A. 10] describes an implementation of finite field multiplication in

specific binary fields. The performance reported in their paper is 3-orders of magnitude

7
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slower than the performance reported in our work, and their implementation would

benefit from bit slicing, register cache and reduced synchronization techniques presented

here.

An implementation of finite field multiplication on GPUs over GF (q) for some

specific large NIST primes q is discussed in [K. 12]. Our implementation, however, is

optimized for binary fields in a scalable fashion to achieve a generic implementation for

a large variety of field sizes.

Register-based optimizations The benefits of reusing data in registers on GPUs

to boost performance are well known. Volkov and Demmel [V. ] present GPU imple-

mentations of LU decomposition and SGEMM.

Enfedaque et al. [P. 15] show how to implement the DWT (discrete wavelet transform)

of an image of varying sizes where each warp calculates a different part of the output.

They also show that shuffle-based communication achieves better results when the data

each warp fetches from global memory is reused more times, as also confirmed by our

results (cf. Section 5.2).

Davidson and Owens [A. 11] suggest a method called register packing to reduce

shared memory traffic in GPU when dealing with a downsweep patterned computation,

by performing some parts of the computation in registers.

Catanzaro et al. [B. 14] show a shuffle-based implementation for SIMD architectures,

including the GPU. They discuss the benefits of the instruction for reducing shared-

memory bandwidth and show the relation to the Array of Structs – Struct of Arrays

transforms.

nVIDIA’s Kepler Tuning Guide [nVi15] stresses the benefits of registers over shared

memory in terms of latency and capacity. The shuffle instruction is suggested as an

alternative for the use of shared memory in some cases.

We leverage the lessons learned in the previous work, and take one additional step

by suggesting a register cache design methodology for reducing shared memory accesses

to the input data. We demonstrate the application of this methodology on a challenging

case of finite field multiplication in binary fields, and show that it achieves significant

performance benefits.
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Chapter 2

Preliminaries

This chapter briefly reminds the basic elements of polynomial rings and Galois fields

that are necessary to our implementation of additive FFTs. For a thorough introduction

to Galois fields see, e.g., [R. 97a].

The structure of this chapter is a follows; First a general definition to finite fields is

given, then we discuss two of the most common representations for finite field elements,

the Polynomial Bases and Normal Bases.

In the following chapters all references to finite field elements assume these are

represented using a polynomial basis. The definition of a normal basis, being yet another

popular representation for finite fields elements, is given here for completeness. We do

not discuss the implementation of finite field multiplication represented using normal

bases in this work.

2.1 Finite Extension Fields’ Elements and Bases1

2.1.1 Definitions

A finite field or Galois field is a field with a finite number of elements. It is known that

the number of elements in a finite field can only be a power of a prime number. Let p

be a prime and q be a power of p, we denote by GF(qn) or Fqn the Galois-Field with

qn elements, which can be viewed as an extension field over Fq of order n. Therefore

Fqn can interpreted as a vector space of dimension n over Fq. Let α0, α1, . . . , αn−1 be n

linearly independent elements in Fqn over Fq. Any element e ∈ Fqn can be represented

as e =
∑n−1

i=0 ai · αi where ai ∈ Fq. We use the notation e = (a0, a1, . . . , an−1) to state

the e =
∑n−1

i=0 ai · αi.

Let a = (a0, a1, . . . , an−1), b = (b0, b1, . . . , bn−1) be two elements in Fqn . The addition

of a and b is defined as a + b = (a0 + b0, a1 + b1, . . . , an−1 + bn−1) which is a simple

component-wise addition of the entries of a and b over Fq. However, multiplication

tends to be not only more complicated but also more time consuming. We now give

1Definitions are based on [Gao93]
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a general definition for the multiplication operation over finite extension fields using

multiplication tables.

Denote by T 0, T 1, . . . , Tn−1 be n matrices of size n× n over Fq s.t.

αiαj =
n−1∑
k=0

T k
ijαk

So, T k
ij is the coefficient of αk in the product of αi with αj . Given three elements

a, b, c ∈ Fqn such that c = a · b and c = (c0, c1, . . . , cn−1) the component ck in the

multiplication a · b is defined as ck = a · T k · b.

2.2 Polynomial Bases

The ring of polynomials Given a prime p GF (p) is the field with p elements

(0, 1, . . . , p− 1), with addition (⊕) and multiplication (�) performed modulo p.

GF (2) is a field with two elements (0, 1), with addition (⊕) and multiplication

(�) performed modulo 2. A polynomial over GF (2) is an expression of the form

A(x) :=
∑d

i=0 aix
i, where ai ∈ GF (2) and x is a formal variable; henceforth we simply

call A(x) a polynomial because all finite field elements in this work are represented as

polynomials over GF (2). The degree of A, denoted deg(A), is the largest index i such

that ai 6= 0. Addition and multiplication of polynomials (also called ring addition and

multiplication) are defined in the natural way, i.e., for B(x) =
∑m

i=0 bix
i with m ≥ d

we have A(x)⊕B(x) =
∑m

i=0(ai ⊕ bi)xi and A(x)�B(x) =
∑d+m

j=0 xj ·
⊕j

i=0 ai � bj−i.
The set of polynomials, augmented with the operations of addition and multiplication

defined above, forms the ring of polynomials over GF (2), denoted GF (2) [x]. Later,

we reduce the problem of efficient multiplication in the field GF (2n) to the problem of

multiplying polynomials in the ring GF (2) [x].

The standard representation of a binary field The most common way to repre-

sent GF (2n), also used here, is via a standard basis, as described next. A polynomial

r(x) ∈ GF (2) [x] of degree n is called irreducible if there is no pair of polynomials

g(x), f(x) ∈ GF (2) [x] such that r(x) = g(x) � f(x) and deg(g),deg(f) < n. Many

irreducible polynomials exist for every degree n. (Later, a special class of irreducible

polynomials will be used to speed up multiplication.) Having fixed an irreducible r(x),

for every pair A,B of polynomials of degree < n, there exists a unique polynomial

C of degree < n such that r(x) divides A(x) � B(x) ⊕ C(x) in the ring GF (2) [x];

i.e., there exists C ′(x) such that A(x) � B(x) ⊕ C(x) = r(x) � C ′(x). Denote the

transformation that maps the pair of polynomials (A(x), B(x)) to the polynomial C(x)

by ⊗r, where r is used to emphasize that this transformation depends on the irreducible

polynomial r(x). The set of polynomials of degree < n, along with ring addition ⊕ and

10
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multiplication ⊗r defined above, is a standard basis representation2 of GF (2n). When

the irreducible polynomial h is clear from context, we shall often drop it and denote

GF (2n) multiplication simply by ⊗.

Example of multiplication in standard representation In this example we show

the field multiplication of two elements in GF
(
24
)
, using the standard representation

induced by the irreducible degree-4 polynomial r(x) := x4 + x+ 1. Consider the two

elements A(x) = x + x3 and B(x) = 1 + x2, represented in the standard basis by

a := (1010), b := (0101). To compute the 4-bit string c = a⊗r b we work as follows:

� Compute the product C ′(x) of the two polynomials A(x), B(x) in the ring

GF (2) [x], namely, C ′(x) := A(x) � B(x) = (x + x3) � (1 + x2) = x +��2x3 + x5

(middle term canceled because we work modulo 2).

� Compute the remainder C(x) of the division of C ′(x) by r(x); in our example

C(x) = x2 and one can verify that deg(C) < 4 and r(x)� x = C ′(x)⊕ C(x), as

defined above.

Thus, a⊗r b = c where c := (0100).

Field multiplication reduces to ring multiplication The previous definitions and

example show two main points that we exploit next. First, when multiplying two elements

in the standard representation induced by r(x), it suffices to (i) multiply polynomials

in the ring GF (2) [x] and then (ii) compute the remainder modulo r(x). Second, the

structure of r(x) may influence the complexity of computing field multiplication.

2.3 Normal Bases

Given an element α ∈ Fqn a normal basis for over Fq has the special form of α, αq, . . . , αqn−1
,

let us denote by αi the element αqi . Notice the fact that αi
qj = αi+j . Therefore, given

an element a = a0, a1, . . . , an−1 in Fqn note that aq = (an−1, a0, a1, ..., an−2) so taking

an element to the power of q is computationally simple as a right cyclic shift of the

vector once and taking an element to the power of qk is doing a cyclic shift by k places.

In our case, for q = 2, it is important not only that squaring can be executed in a

fast manner for itself, because fast squaring affects the time needed for exponentiation

using the repeated squaring and multiplication method, which by itself can make the

inversion over the field much faster.

Additional important advantage is derived from the following observation, αi ·
αj=(α · αj−i)

i (assuming j ≥ i). So the kth coefficient of αi · αj is the kth coefficient of

(α · αj−i)
i which is the k− i coefficient of α ·αj−i. Therefore for all i, j, k where k, j > i

it holds that T k
ij = T k−i

0,j−i, by taking k = i. So in fact we only need a multiplication

2The term “basis” refers to the algebraic fact that the n elements 1, x, x2, . . . , xn−1 are linearly
independent over GF (2), i.e., they form a basis for GF (2n) over GF (2); cf. [R. 97a] for more information.
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table for α · αi for all 0 ≤ i < n and by this reducing by one dimension the size of

multiplication tables, saving more space. Luckily, it was proved that there is a normal

basis for any finite Galois extension of fields (The normal basis theorem), conjectured

by Eisenstein in 1850 [Eis50] and first proved by Hensel in 1888 [Hen88].

In conclusion, only one multiplication table would suffice, notice that the time needed

to multiply two elements depends on the number of non-zero entries in the table which

will be called the complexity of the base and will be denoted by c(N) where N is the

normal basis of the field. So, we will be interested in bases with low complexities. An

important theorem proved by Mullin et al. [R. 89] states that for each normal basis N

of Fqn over Fq, c(N) ≥ 2n− 1, bases with this complexity will be called optimal normal

bases. Optimal normal bases don’t exist for all n for q = 2, but according to [Gao93] for

27 values of n where 2 ≤ n ≤ 64 for which there exist a normal basis in F2n over F2.

12
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Chapter 3

Theoretical Discussion

3.1 Fast Multiplication in GF(2n)

Finite field multiplication is generally far more time consuming than addition, both in

terms of bit operations and in terms of machine cycles, when turning into finite field

software implementation. This particularly holds for the fields we are interested in,

finite fields of characteristic 2.

Multiplication speed in GF(2n) is tightly connected to the field representation

(addition is XOR under any basis for GF(2n) over GF(2)). Two of the most common

representations are, as stated in chapter 2,

1. Standard Basis: Elements are polynomials in GF (2) [X] and multiplication is

carried out modulo an irreducible polynomial of degree n over GF (2) [X].

2. Normal Basis: Elements are the Frobenius automorphisms of a basic element α

and multiplication is defined by a matrix. See [Gao93] for additional details.

We work under the standard basis. To speed up multiplication we choose a special kind

of irreducible polynomial, called a 2-gapped polynomial. We show that multiplication

in GF(2n) can be reduced to one multiplication of polynomials of degree n-1 and two

multiplications of polynomials of degree n
2 over the ring GF (2) [X] and 2n additions in

GF(2). Let us first introduce the notion and importance of k −Gapped polynomials in

GF(2n) field for k = 2, as described in algorithm 3.1.

Definition 3.1.1. An irreducible polynomial r(x) =
∑
aix

i of degree d is k-Gapped

if it can be written as r(x) = xd − r1(x) where deg (r1(x)) ≤ d/k

Denote by hi(x) the value of h(x) calculated on step i in algorithm 3.1

Lemma 3.1.2. h1(x) ≡ h2(x) mod r(x)
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Algorithm 3.1 2-Gapped Multiplication in GF(2n)

Input:
� a(x), b(x) of degree at most n− 1 in F2 [X].

� r(x) = xn − r1(x), 2-Gapped polynomial in F2 [X] of degree n.
Output: h(x) = (a(x) ∗ b(x)) mod r(x)

1: h(x)← a(x) ∗ b(x)

2: h(x)← h
3n/2−1
0 (x)⊕ h2n−13n/2 (x)� r1(x) ∗ xn/2

3: h(x)← hn−10 (x)⊕ h3n/2
n (x)� r1(x)

4: return h(x)

Proof.

a(x) · b(x) = h1(x)

= h01(x) + x
3n/2 · h11(x) deg

(
hi1(x)

)
≤ n/2− 1

≡ h01(x) + r1(x) · h11(x) · xn/2 mod r(x) xn ≡ r1(x) mod r(x)

= h2(x) mod r(x)

Lemma 3.1.3. deg (h2(x)) ≤ 3n/2− 1

Proof.

deg (h2(x)) = max
(

deg
(
h01(x)

)
,deg

(
x

n/2
)

+ deg
(
h11(x)

)
+ deg (r1(x))

)
≤ max (n− 1, n/2 + n/2− 1 + n/2)

= 3n/2− 1

Lemma 3.1.4. h2(x) ≡ h3(x) mod r(x)

Proof.

h2(x) = h02(x) + xn · h12(x) deg
(
h02(x)

)
≤ n− 1 deg

(
h12(x)

)
≤ n/2− 1

≡ h02(x) + r1(x) · h12(x) mod r(x) xn ≡ r1(x) mod r(x)

= h3(x) mod r(x)

Lemma 3.1.5. deg (h3(x)) ≤ n− 1

Proof.

deg (h3(x)) = max
(
deg

(
h02(x)

)
, deg

(
h12(x)

)
+ deg (r1(x))

)
≤ max (n− 1, n/2− 1 + n/2)

= n/2− 1
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Algorithm 3.2 k-Gapped Multiplication in GF(pm)

Input:
� a(x), b(x) of degree at most m− 1 in Fp[x].

� r(x) = xm − r1(x), k-Gapped polynomial in Fp[x] of degree m.
Output: h(x) = (a(x) · b(x)) mod r(x)

1: `← m/k
2: h(x)← a(x)� b(x)
3: for i = k − 1 down to 0 do
4: t← m+ ` · i
5: h(x)← ht−10 (x)⊕ ht+`−1

t (x)� r1(x)� xt−m

6: return h(x)

Lemma 3.1.6. h3(x) = (a(x) · b(x) mod r(x))

Proof. From lemma 3.1.2 and lemma 3.1.4 we get h3(x) ≡ a(x) · b(x) mod r(x). From

lemma 3.1.5 we get that deg (h3(x)) ≤ n− 1 so the equality holds.

Algorithm 3.1 minimizes number of polynomial multiplications, can be adapted to

multiplication in our field of interest, GF
(
264
)
.

3.1.1 Generalization for Optimized Multiplication in k-Gapped Finite

Fields

In algorithm 3.2 we also present an extension to finite field multiplication in general

k −Gapped fields GF(pm).

Let us denote by A(n) and M(n) as the numbers of additions and multiplications in

GF(p) that performed when multiplying to polynomials of degree at most n over the

ring GF (p) [X].

Theorem 3.1. Algorithm 3.2 performs,

� 2m+A(m− 1) + k ·A
(
m
k

)
additions in GF

(
pk
)
.

� M(m− 1) + k ·M
(
m
k

)
multiplications in GF

(
pk
)

Proof. We will count separately the number of operations within polynomials multipli-

cations and out of them.

� The number of additions in GF
(
pk
)

which are not part of polynomial multipli-

cations is at most 2m. In each iteration we add the polynomial ht+`−1
t (x) �

r1(x)� xt−m which has at most 2m
k non-zero coefficients, which are the topmost

coefficients, while others will be zero. This addition requires 2m
k additions. Over

k iterations there will be 2m additions in total.

� There are no multiplications in GF(p) except for those which are part of polynomial

multiplications.
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Algorithm 3.3 Näıve polynomial multiplication

Input:
a(x), b(x) of degree at most n− 1.

Output: c(x) = a(x)� b(x)
1: for i = 0, . . . , n− 1 do
2: ci ← 0
3: for j = 0, . . . , i do
4: ci ← ci ⊕ aj � bi−j
5: for i = n, . . . , 2n− 2 do
6: ci ← 0
7: for j = i, . . . , 2n− 2 do
8: ci ← an−1+i−j � bj−n+1

9: return c(x) =
∑2n−2

i=0 ci · xi

� Let us denote by A(n) and M(n) the number of additions and multiplications in

GF(p) needed to multiply two polynomials of degree n over the ring GF(p) [X]

respectively. Our algorithm first multiplies two polynomials of degree at most m−1

in and then multiplies k times polynomials of degree m
k , all over the ring GF (p) [X].

This takes M(m−1)+k ·M
(
m
k

)
multiplications and A(m−1)+k ·A

(
m
k

)
additions

in GF
(
pk
)

Notice that the number of multiplications and additions depends on the algorithm

that is used to multiply polynomials. The complexity of polynomial multiplication has

been extensively studied. The number of bit operations of the näıve algorithm (see

Algorithm 3.3) is O
(
n2
)
. More sophisticated algorithms by Karatsuba [KO63] and by

Schonhage and Strassen [SS71, D. 91] are asymptotically faster, requiring O
(
nlog2 3

)
and O(n log n log logn) bit operations, respectively.

In this work we use the näıve Algorithm 3.3 because it is fastest for polynomials of

degrees below 1000 [M. 05] and its simplicity makes it a prime starting point for study.

Lemma 3.1.7 (Correctness). Algorithm 3.2 outputs (a(x) · b(x)) mod r(x).

Proof. Denote by hj(x) the value of h(x) as computed after the iteration in which

i = j and hk(x) will be h(x) before the loop. So hk(x) = a(x) · b(x). We will prove by

induction on j that hj(x) ≡ (a(x) · b(x)) mod r(x) and that the degree of hj(x) is at

most m+ j · `− 1.

In the base case, j = k, and hk(x) = a(x) · b(x) so its’ degree is at most 2m and the

claim obviously holds.

Assume the for some n we know that the claim holds, now we shall prove it for n− 1.

Denote by t the value of variable t in this iteration where t = m+ ` · (n− 1). According
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to step 5 of the algorithm hn−1(x) = (hn)t−10 (x) + (hn)t+`−1
t (x) · r1(x) · xt−m so,

deg (hn−1(x)) = deg
(

(hn)t−10 (x) + (hn)t+`−1
t (x) · r1(x) · xt−m

)
= max

(
deg

(
(hn)t−10 (x)

)
, deg

(
(hn)t+`−1

t (x) · r1(x) · xt−m
))

= max (t− 1, `− 1 + `+ t−m)

Since k ≥ 2 then ` = m/k ≤ m/2 so.

deg (hn−1(x)) ≤ max (t− 1, 2 · m/2 + t−m)

= max (t− 1, t− 1)

= t− 1

= m+ ` · (n− 1)− 1.

Now we shall prove by induction that hi(x) ≡ hk(x) mod r(x). The base case is

obvious for k. Assume that hn(x) ≡ hk(x) mod r(x) , since deg (hn(x)) ≤ m+` ·(n)−1

then, it can be written as (hn)t+`−1
t (x) · r1(x) · xt−m

hn−1(x) = (hn)t−10 (x) + (hn)t+`−1
t (x) · r1(x) · xt−m

≡ (hn)t−10 (x) + (hn)t+`−1
t (x) · xm · xt−m mod r(x)

= (hn)t−10 (x) + (hn)t+`−1
t (x) · xt

= hn(x)

So we return h0(x) of degree at most m − 1 the equivalent to hk(x) = a(x) · b(x)

modulo r(x), which proves the correctness of the algorithm.

3.1.2 Finding a k-Gapped polynomial

According to Lidl and Niederreiter [R. 97b] the probability that a randomly chosen

polynomial is irreducible is roughly 1/n. In a paper published by HP [G. 98] it was

mentioned that in binary extension fields, it should be quite probable (i.e. probability

is bigger than a constant) to find k−Gapped pentanomials for k s.t.
(
k
3

)
≈ n, they also

present a list of k −Gapped pentanomials that satisfy this equality for any practical n.

They also raise an open question whether do irreducible binary pentanomials exist of

degree n that are Ω
(

3
√
n2
)

gapped.

Notice that multiplying any polynomial of degreem by a quadrinomial or pentanomial

can be done in O (m), so under the assumptions presented in [G. 98], this is a modular

reduction in the polynomial ring GF (2) [X] with linear time complexity.
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3.2 Generalizing Gao & Mateer’s Additive FFT for affine

subspaces

The Additive FFT algorithm introduced by Gao and Matteer [S. 10], when applied to

binary fields, evaluates a 2n − 1 degree polynomial over a subspace of dimension n for

general n in a finite field of characteristic two. It was the first algorithm that broke the

Ω(n · log2(n)) multiplications barrier, with only O(n · log(n)) base field multiplications.

See [Mat08] for previous FFT algorithms with the same runtime that were suited only

for subspaces with dimensions which is a power of two.

We present a variation of that algorithm that fits affine subspaces as well. For the

sake of completeness, we will describe the whole algorithm, relying on formulations and

notations used by Gao and Mateer in their paper mentioned above.

3.2.1 Taylor Expansion

The additive FFT algorithm computes at some points the generalized Taylor expansion

of polynomials at
(
x2 − x

)
. A more general definition can be found in [J. 03] and [S.

10].

Given a polynomial f(x) ∈ F[x] of degree strictly smaller than n = 2k+2 where F is

a finite field of characteristic 2, the taylor expansion algorithm of f at
(
x2 − x

)
finds

m = n
2 linear functions h0(x), h1(x), ..., hm−1(x) ∈ F[x], such that,

f(x) = h0(x) + h1(x) · (x2 − x) + ...+ hm−1 · (x2 − x)m−1

We will denote this expansion as

T (f, n) = (h0, ..., hm−1)

To compute the Taylor expansion, we first write f(x) as f(x) = f0(x)+x2
k+1
(
f1(x) + x2

k
f2(x)

)
where

� deg f0 < 2k+1

� deg f1 < 2k

� deg f2 < 2k

F is a finite field of characteristic two, therefore,

x2
k+1

= (x2 − x)2
k

+ x2
k

thus

f(x) = f0(x) + x2
k

(f1(x) + f2(x)) + (x2 − x)2
k
(
f1(x) + f2(x) + x2

k
f2(x)

)
18
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Algorithm 3.4 Taylor Expansion at x2 − x
Input: (f, n) where n ≥ 1 and f(x) ∈ F[x] of degree < n.
Output: T (f, n), the taylor expansion of f(x) at x2 − x.

1: if n ≤ 2 then
2: return f(x)

3: Find k such that 2k+1 < n ≤ 2k+2.

4: Divide f(x) into three parts as f(x) = f0(x) + x2
k+1

(
f1(x) + x2

k
f2(x)

)
5: Set h← f1 + f2, g0 ← f0 + x2

k
h, g1 ← h+ x2

k
f2.

6: V1 ← T (g0, n/2)
7: V2 ← T (g1, n/2)
8: return (V1, V2)

Let h(x) = f1(x) + f2(x), g0(x) = f0(x) + x2
k
h(x), g1(x) = h(x) + x2

k
f2(x).

Then,

f(x) = g0(x) + g1(x)(x2 − x)2
k

Due to the degrees of f0, f1, f2 we know that

deg g0, g1 < 2k+1

Therefore,

T (f, n) =
(
T (
(
g0, 2

k+1
)

), T
(
g1, 2

k+1
))

The time complexity of the algorithm, as described in [S. 10] is,{
≤ n · dlog2(n/t)e , for any n

= 1
2n dlog2(n/t)e , when n/t is a power of two

(3.1)

A full description of the algorithm can be found in algorithm 3.4.

3.2.2 Additive FFT in Binary Fields Over Affine Subspaces

In this section we will conform with the notations of Gao and Mateer and extend their

algorithm presented in [S. 10] to calculate additive FFTs over any affine subspace and

not only over subspaces.

Our additive FFT algorithm works over a finite field F of characteristic 2. It gets

as input a polynomial f(x) ∈ F[x], a basis of a subspace 〈β1, . . . , βm〉 of dimension m,

where β1, ..., βm are linearly independent over GF(2), it also gets as input an affine shift

sB.

Let us define an ordering of the elements of B. Given a number 0 ≤ i < 2m with

binary representation

i = a1 + a2 · 2 + · · ·+ am · 2m−1 = (a1, a2, · · · , am)2,
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Where each aj is either 0 or 1. The ith element of affine subspace B is

B[i] = s+ a1β1 + a2β2 + · · ·+ amβm.

The algorithm’s output is the evaluation of f(x) over all elements in the affine

subspace B = sB + 〈β1, ..., βm〉, and will be denoted as,

FFT (f,m,B) = (f (B[0]) , f (B[1]) , · · · , f (B[2m − 1]))

The algorithm is recursive, we show how to reduce a problem of size n > 2 to two

problems of size k = n/2 = 2m−1. Let

γi = βi · β−1m , 1 ≤ i ≤ m− 1

sG = sB · β−1m

and

G = sG + 〈γ1, ..., γm〉 (3.2)

Let g(x) = f(βmx). Evaluating f(x) over B is equivalent to the evaluation of

g(x) over G ∪ (G + 1). So we wish to calculate FFT(g,G) and FFT(g, (G + 1)). Let

D = sD + 〈δ1, . . . , δm−1〉 where,

δi = γ2i − γi, 1 ≤ i ≤ m− 1

We know that each γi is not 1 or 0, so δi is not 0. Since γ1, ..., γm and 1 are linearly

independent over GF(2) the elements δ1, . . . , δm−1 are linearly independent over GF(2)

as well and span the affine subspace,

D = sD + 〈δ1, . . . , δm−1〉

of size k = 2m−1 = n/2.

Notation 1. Given α = a1γ1 + · · ·+ am−1γm−1 ∈ G, the element α∗ is

α∗ = α2 − α = a1δ1 + · · ·+ am−1δm−1

Therefore,

G[i]∗ = D[i], 0 ≤ i < k

Suppose we are given the Taylor expansion of g(x) at x2 − x.

g(x) =

k−1∑
i=0

(gi0 + gi1x) ·
(
x2 − x

)i
(3.3)
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and gij ∈ F. Let

g0(x) =

k−1∑
i=0

gi0 · xi, and g1(x) =

k−1∑
i=0

gi1 · xi. (3.4)

Notice that for any α ∈ G and b ∈ GF (2), since (α+ b)2 − (α+ b) = α∗, we have

g(α+ b) = (g0 (α∗) + α · g1 (α∗)) + bg1 (α∗) (3.5)

Therefore, the FFT of g(x) can be calculated from the FFTs of g0(x) and g1(x) over D.

Let the FFT of g0(x) and g1(x) over D be,

FFT (g0,m− 1, D) = (u0, u1, . . . , uk−1) , ui = g0(D[i])

FFT (g1,m− 1, D) = (v0, v1, . . . , vk−1) , vi = g1(D[i])
(3.6)

Equation 3.5 implies that

FFT (g,m− 1, G) = (w0, w1, . . . , wk−1)

Where wi = ui +G[i] · ui for 0 ≤ i < k. It also implies that,

FFT (g,m− 1, G+ 1) = FFT (g,m− 1, G) + FFT (g1,m− 1, D).

This reduction step is applied recursively until the input polynomials are linear functions

that can be evaluated easily. In algorithm 3.5 a summary of the written above can be

found.

The only two additions we made to Gao and Mateer’s algorithm is calculating

recursively a series of affine shifts. The only place which these shifts take place is the

bottom of the recursion, where we evaluate the linear function as described in step 1.

We will now compute the runtime of the algorithm. To compute the basis elements of

G and D and the affine shifts in step 5, we perform 2m+2(m−1)+· · ·+2·2 = m(m+1) =

O(log22(n)) multiplications, and the number of additions is m+(m−1)+ · · ·+2 = m(m−
1)/2 = O(log22(n)). In step 2, we compute the powers of βim for 2 ≤ i ≤ n−1, with a total

number of multiplications that is at most (2m−2)+(2m−1−2)+· · ·+(22−2) < 2·2m = 2n.

Up until now, the whole computation can be preprocessed, and costs negligible time.

In step 1 the recursion ends and it costs 2 multiplications and 2 additions. Step 2

costs an additional n− 1 multiplications (besides computing the powers of βm). The

Taylor expansions cost additional 1
2 · n · log2(n) − 1

2 · n additions. Step 7 has two

invocations of the FFT algorithm of size n/2. Step 10 costs n multiplications and n

additions. Let M(n) and A(n) denote the number of multiplications and additions

performed by the algorithm, respectively, on an input of size n. Then M(2) = A(2) = 2,
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Algorithm 3.5 Additive FFT of length n = 2m

Input:
� f(x) ∈ GF

(
2t
)

[X] of degree < n = 2m.

� B = 〈β1, ..., βm〉, a basis with linearly independent elements over GF(2).

� S, an affine shift to the subspace spanned by βi’s.
Output: FFT (f,m,B, S) = (f(B[0] + S), ..., f(B[n− 1] + S))

1: If m = 1 then return f(S), f(S + β1). . Linear Evaluation Phase.
2: Compute g(x) = f (βmx). . Shift Phase.
3: Compute the Taylor expansion of g(x) as in algorithm 3.4 . Taylor Expansion

Phase.
4: Let g0(x) and g1(x) from g(x) as in (3.4). . Shuffle Phase.
5: Compute γi ← βi · β−1m , δi ← γ2i − γi for 1 ≤ i < m, sG ← S · β−1m and
sD ← s2G − sG.

6: Let G← sG + 〈γ1, . . . , γm−1〉, and D ← 〈δ1, . . . , δm−1〉.
7: Let k = 2m−1 compute

FFT(g0,m− 1, D, sD) = (u0, u1, . . . , uk−1), and
FFT(g1,m− 1, D, sD) = (v0, v1, . . . , vk−1).

8: for 0 ≤ i < k do
9: wi ← ui +G[i] · vi

10: wk+1 ← wi + vi. . Merge Phase.

11: return (w0, w1, . . . , wn−1)

and for any n = 2m > 2, it holds that

M(n) = 2 ·M
(
n
2

)
+ 2n− 1,

A(n) = 2 ·A
(
n
2

)
+ 1

2 · n · log2(n) + 1
2 · n.

By induction we get

M(n) = 2 · n · log2(n)− 3n
2 + 1,

A(n) = 1
4 · n · (log2(n))2 + 3

4 · n · log2(n)
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Chapter 4

CPU

In this chapter we briefly discuss the implementation of the additive FFT in binary

fields algorithm and the finite field multiplication operation on which it relies. We rather

state the functionality of our implementation so it can be compared to the GPU finite

field arithmetics and implementation. We clarify that the main scope of this work is

not a CPU implementation of neither additive FFTs over binary fields or these fields’

multiplication and this chapter is given for completeness.

4.1 Finite Field Arithmetics

In this section we discuss the implementation of finite field arithmetics needed to

compute the additive FFT in GF
(
264
)
.

4.1.1 Element Representation on CPU

A GF
(
264
)

field element represented in the standard basis is a binary polynomial whose

degree is at most 63. All operations are performed modulo an irreducible polynomial

of degree 64, that will be denoted by r(x) Each element in GF
(
264
)

is known to be

equivalent to a unique polynomial modulo r(x). Each element e will be represented in

the polynomial basis using the polynomial

pe(x) =
63∑
i=0

ciex
i

4.1.2 Finite Field Library API

To support the implementation of the FFT algorithm on CPU we have implemented

the following operations for elements in GF
(
264
)
,

Addition Given two elements a, b the representation of a+ b is ca⊕ cb. The implemen-

tation of addition in GF
(
2k
)

is just bitwise XOR of the two elements.
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Multiplication See section 3.1 for a full theoretical description of this operation.

Implementation is given in section 4.1.3.

Squaring Implemented as a multiplication of an element by itself.

Exponentiation Implemented using the repetitive squaring and multiplying algorithm.

Inversion The inverse of an element a is an element b s.t. there exists a polynomial q(x)

for which a(x) ·b(x)+q(x) ·r(x) = 1.The inversion is implemented by implementing

the extended euclidean algorithm to find this b. The inversion operation is used

only n times when evaluating an FFT of a subspace of size 2n and due to the very

limited use of this operation, it was implemented in a very naive manner.

4.1.3 Implementation of multiplication in GF(264)

GF(2n) multiplication has received considerable attention (cf. [J. 86, E. 96]) and is

implemented efficiently for CPU in popular software libraries like NTL [V. 03] and

MPFQ 1. Moreover, in large part because of the importance of GF (2n) multiplication,

Intel introduced in 2010 a dedicated CPU instruction called CLMUL which performs

GF (2) [x] ring multiplication of polynomials of degree up to 64 in 7–14 cycles [Fog16].

Both NTL and MPFQ use this dedicated instruction. This instruction can be used

to multiply polynomials of higher-degree, thereby supporting GF (2n) multiplication for

values n > 64 (cf. [C. 12] for one such implementation).

Algorithm 6.1 shows how to perform finite field multiplication in binary fields with

elements being represented in the standard basis and the irreducible polynomial is

2-Gapped. The multiplication in GF(2n) by this algorithm is composed of three multi-

plications of polynomials in the ring GF (2) [X] of degrees up to k − 1 and to additions

of such polynomials. The multiplication of such polynomials can be implemented using

the CLMUL instruction that was mentioned before. The implementation is detailed in

algorithm 4.2.

Notation 2. Given a polynomial p(x) =
∑
akx

k we will denote by pji (x) =
∑j

k=i akx
k−i

Note that the multiplication by x32 in line 2 will be implemented by an arithmetic

shift-left of the bits.

The NTL library proposed the same implementation shown here when performing

multiplication with a 2-Gapped irreducibles in binary fields. While NTL’s implemen-

tation is more general, we focused in our CPU implementation on the specific field of

GF
(
264
)
. The implementation, using CLMUL instruction is described in algorithm 4.2.

Our C++ implementation of algorithm 4.2 cuts NTL’s implementation by half. A

full comparison and performance analysis is detailed in chapter 8

1http://mpfq.gforge.inria.fr/doc/doc.html
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Algorithm 4.1 Multiplication in GF(2n)

Input:
� a(x), b(x) of degree at most n− 1 in F2 [X].

� r(x) = xn + r1(x), 2-Gapped polynomial in F2 [X] of degree n.
Output: h(x) = (a(x)� b(x)) mod r(x)

1: h(x)← a(x)� b(x)

2: h(x)← h
3n/2−1
0 (x)⊕ h2n−13n/2 (x)� r1(x)� xn/2

3: h(x)← hn−10 (x)⊕ h3n/2
n (x)� r1(x)

4: return h(x)

Algorithm 4.2 2-Gapped Multiplication in GF
(
264
)

using CLMUL

Input:
� a(x), b(x) of degree at most 63 in F2 [X].

� r(x) = x64 + r1(x), 2-Gapped polynomial in F2 [X] of degree 64.
Output: h(x) = (a(x) · b(x)) mod r(x)

1: h(x)← CLMUL (a(x), b(x))
2: h(x)← h950 (x) + CLMUL

(
h12796 (x), r1(x)

)
· x32

3: h(x)← h630 (x) + CLMUL
(
h9564(x), r1(x)

)
4: return h(x)

4.2 Parallel FFT and inverse FFT implementation

We implemented the additive FFT and IFFT algorithms of Gao and Matteer [S. 10].

The implementation was parallelized to a large number of cores using openMP [B.

07]. Unfortunately, despite being very fast for a single thread, the implementation

didn’t scale-up for large number of cores. The reason for this lack of scalability of this

implementation is left out of the scope of this work.
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Chapter 5

GPU - Introduction of Register

Cache

5.1 Introduction of GPUs1

The Graphics Processing Unit (GPU) is a prarallel machine that runs many threads

in parallel. Threads are the basic units of execution in it that process words of size

B. Each thread has local memory in the form of registers. The number of registers in

the GPU is limited and they are partitioned evenly among running threads. Threads

are grouped into warps. A warp is a set of W threads that operates in lock, i.e., at a

given step all threads in the warp execute the same instruction. A thread-block is a

set of warps that can share a dedicated memory used for for communication between

threads of the same thread block. The set of instructions is fixed and called PTX-ISA.

A set of thread-blocks is called a grid and is the largest unit of computation we are

interested in, representing all running threads. It has global memory of practically

unlimited size but accessing it is slower than accessing the shared memory or local

memory (registers). Each thread also has a unique thread-ID which it has access to.

These IDs are distributed among threads in a way that all threads of the same warp

posses W consecutive IDs.

Grouping threads into warps has a major significance not only on the computational

model itself but on global memory accesses efficiency as well. Global memory accesses

are issued by the device in the form of transactions where each transaction reads from

or writes to a large number of addresses in a single burst. All load and store operations

issued by threads of the same warp are coalesced by the device to minimize the number

of transactions required to perform the requested operations. The more scattered the

load/store addresses are, the more transactions will be needed to perform the load/store

operation, therefore each GPU programmer must make an effort to make his global

1Based on nVidia’s white papers of the Fermi and Kepler architectures.
(http://www.nvidia.com/content/pdf/fermi white papers/nvidia fermi compute architecture whitepaper.pdf)

(http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf)
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memory accesses as coalesced as possible. GPU is consisted of many ALUs. Each warp

is executed on a single ALU. The ALUs can execute the same instruction over W inputs.

At each time step each ALU performs an instruction with input begin sent by each of

the threads of the warp. ALU executes the instruction on all inputs in parallel and

returns each result to the relevant thread. This kind of computation in which a single

instruction is executed, in parallel, on many inputs is called SIMD (single instruction -

multiple data). Since ALUs are SIMD, the processing time increases if threads diverge

on the instruction executed at a given time step. Thus, warps whose threads all give the

sameinstruction at the same time step are called non-divergent. A great effort should

be given to maintaining a non-divergent execution of all warps.

Intra-warp communication is very common and can be done in two ways,

1. Shared Memory, to which one thread can write data that, later on, other threads

can read.

2. Shuffle, which is a special instruction executed by all threads in the same warp

where thread i shares a value vi stored in its register and also states a number

ti of a thread in the warp. The call shuffle(vi, ti) will make thread ti write the

value vti into a register of thread i.

The main complexity measures we seek to optimize are minimizing the communication

complexity between the threads and memory, by efficiently using the registers and

minimizing accesses to shared and global memory. We also wish to minimize the parallel

running time, measured in number of parallel instructions. This will be achieved by

minimizing divergent executions and having all global memory accesses coalesced. We

shall first look at multipoint multiplication over finite fields of characteristic 2, and

later on we will examine the interpolation and multi-point evaluation problems, also

known as FFT and inverse-FFT. In this latter case we care about evaluation over affine

subspaces.

The key to the efficient implementation of the finite field multiplication is a novel

performance optimization methodology that we call register cache and is discussed in

chapter 5.2. This methodology allows to speed up an algorithm that uses shared memory

for caching its input by transforming it to use per-thread registers instead. We show

how to replace shared memory accesses with the shuffle intra-warp communication

instruction, and thereby significantly reduce and even entirely eliminate shared memory

accesses. We thoroughly analyze the register cache approach and characterize its benefits

and limitations.

We apply the register cache methodology to the implementation of the binary finite

field multiplication algorithm on GPUs. We achieve up to 138× speedup for fields of

size 232 over the popular highly optimized Number Theory Library (NTL) [V. 03] which

uses specialized CLMUL CPU instruction, and over 30× for larger fields of size below 2256.

Our register cache implementation enables up to 50% higher performance compared to

the traditional shared-memory based design.
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Next, we deeply elaborate an implementation of additive FFT and inverse additive

FFT over affine subspaces that achieves high occupancy, meaning that the processing

hardware in the GPU chip is idle in a negligible part of the computation time. All

implementations are non-divergent and have no non-coalesced global memory accesses.
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5.2 Intra-warp register cache

On-die shared memory is commonly used for data sharing among threads in the same

T B. One common practice is to optimize input data reuse, whereby the kernel input

is first prefetched from the global memory into the shared memory, thus saving global

memory access cost on the following accesses.

In this section we focus on the register cache, a design methodology whose goal is

to improve kernel performance by transforming computations to use registers instead

of shared memory. We use private registers in each thread as a distributed storage,

effectively implementing a layer of user-managed cache for the threads in the same warp

with the help of the shuffle() instruction.

The benefits of using registers and shuffle() are well known in SIMD architec-

tures [B. 14], and are embraced in GPU computing [nVi15,V. ,P. 15,A. 11,S. 16,G. 15].

The shuffle()-based design removes the T B-wise synchronization overhead associated

with the use of shared memory, and allows higher effective memory bandwidth to the

data stored in registers. However, the existing uses of shuffle() are application-specific

and offer no guidance for the design of the algorithm. Here we suggest a systematic

approach to constructing shuffle()-based algorithms, aiming specifically to optimize

applications with significant input data reuse.

Problem setting We consider a common application scenario in which threads

prefetch the shared T B input into shared memory and then access it repeatedly. Our

goal is to reduce the use of shared memory as much as possible by identifying sharing

and access patterns among the threads of a single warp, and replacing certain or all

shared memory accesses by shuffle().

Overview We start with a shared memory-based implementation. The following steps

accomplish the kernel transformation to use registers instead.

1. Identify warp inputs in shared memory.

2. Distribute inputs across warp threads such that each thread stores some part of the

shared input in its registers. The optimal distribution is application dependent.

3. Logically break computations into two interleaving bulk-synchronous phases:

communication and computation. The communication phase corresponds to the

shared memory accesses in the original implementation. The computation phase

is similar to the original implementation, but uses only the data in local registers.

Communication phase We now describe the communication phase transformations

in greater detail.

1. For each thread, declare the data to be read from other warp threads. We refer

to each access as a Read(var, tid) operation, such that tid is the thread to read

from, and var is the remote variable holding the data, both determined by the
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data distribution.

2. For each thread, compile the list of local variables required for the other threads

by observing Read operations issued by them. Declare each such variable using

Publish(var) operations.

3. Align Read and Publish operations in each thread and across the threads, such

that (a) there is one Read for each Publish in each thread, and (b) there is one

Publish for the value in the remote thread for each local Read. This step might

require duplicating some calls to achieve perfect alignment, and/or redistribution

of the inputs to reduce conflicts, i.e., when aligned Read requests from different

threads need different variables from the same thread. Replace Read-Publish

tuples with shuffle() calls.

5.2.1 Example: 1D k-stencil

We now illustrate this scheme using a 1D k-stencil kernel. We then apply the same

principles to the finite field multiplication in Section 6.3.

1D k-Stencil Given an input array a0, . . . , an−1, the output of a k-stencil kernel is

an array b0, . . . , bn−1 such that bi =
∑i+k

j=i−k ai
2k+1 , assuming ai = 0 for i < 0 or i ≥ n. k is

also called a window size. Note that each input element is read 2k + 1 times during

computation. Thus, any implementation must cache the input in order to exploit data

reuse.

In what follows we use k = 1 for clarity, and remind that W =32 threads per warp.

Shared memory implementation We consider the following implementation: (1)

copy input from global memory into a temporary array in shared memory by using all

the T B threads; (2) wait until the input is fully stored in shared memory; (3) compute

one output element; (4) store the results in global memory.

We follow the register cache methodology suggested above to eliminate shared

memory accesses.

Step one: Identify warp inputs Given that i is the index of the output element

computed by thread 0 in a warp, the warp calculates the output elements i, . . . , i+ 31,

and depends on 34 input elements i− 1, . . . , i+ 32, denoted as input array.

Step two: Determine input distribution We use a round-robin distribution of

input arrays among the threads, as illustrated in Figure 5.1. In this scheme, input[i]

is assigned to thread j=i mod 32, where j is the thread index in the warp. Thread

0 and thread 1 each store two elements, while all the other threads store only one.

We denote the first cached element as r[0] and the second as r[1]. Observe that this

distribution scheme mimics the data distribution across banks of shared memory.
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Figure 5.1: Input distribution in 1-stencil computation

Tid 0 1 2-29 30 31

Iteration 1 R(0,i)
P(0)

Iteration 2 R(0,1) R(0,2) R(0,i + 1) R(0,31) R(1,0)
P(1) P(0) P(0) P(0) P(0)

Iteration 3 R(0,2) R(0,3) R(0,i + 2) R(1,0) R(1,1)
P(1) P(1) P(0) P(0) P(0)

Table 5.1: Read (R) and Publish (P) operations in each iteration of the 1D 1-stencil
computation. Tid denotes the thread index in a warp.

Step three: Communication and computation We identify three communication

phases – one for each input element read by each thread. Table 5.1 lists all Read (R)

and Publish (P) operations performed by each thread. Read(i, j) indicates a read from

thread j of its element r[i]. The first communication phase is entirely local, and provided

for clarity.

We now merge Publish-Read tuples into shuffle(). At this point computations in

a warp do not use shared memory. All that remains is to efficiently compute thread

and register indexes in the shuffle() calls while avoiding divergence.

The complete implementation is in Listing 1.

5.2.2 Analysis

Bank conflicts and shuffle() conflicts One of the main challenges of the register

cache design is to transform the Publish and Read operations into shuffle() calls. In

particular, if there are two or more threads performing

Read(var, tid), such that tid is the same and var is different, this is called a conflict,

since thread tid may fulfill these requests only in multiple Publish calls.

A natural question is whether such register cache conflicts are more likely than the

conflicts in shared memory in the original implementation. We argue that this is not
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Listing 1 1-Stencil implementation using the register cache.
1 #define REGISTER_ARRAY_SIZE 2
2 #define FILTER_SIZE 1
3 __global__ void kstencilShuffle(
4 int* in,
5 int* out,
6 int size){
7 int threadInput[REGISTER_ARRAY_SIZE];
8 int threadOutput = 0, reg_idx, tid_idx;
9 int lindex = threadIdx.x & (WARP_SIZE - 1);

10 int gindex =
11 threadIdx.x + blockIdx.x * blockSize.x;
12 // PREFETCH. note: in is padded by FILTER_SIZE
13 int lowIdx = gindex - FILTER_SIZE;
14 int highIdx = lowIdx + WARP_SIZE;
15 threadInput[0] = input[lowIdx];
16 threadInput[1] = input[highIdx];
17

18 //First iteration - data available locally
19 threadOutput+=threadInput[0];
20

21 //COMMUNICATE + COMPUTE
22 reg_idx=(lindex==0)? 1 : 0 ;
23 tid_idx=(lindex+1) & (WARP_SIZE -1);
24 threadOutput+=
25 __shfl(threadInput[reg_idx],tid_idx);
26

27 //COMMUNICATE + COMPUTE
28 reg_idx =
29 (lindex == 0 || lindex == 1) ? 1 : 0 ;
30 tid_idx = (lindex+2) & (WARP_SIZE -1);
31 threadOutput+=
32 __shfl(threadInput[reg_idx],tid_idx);
33 output[gindex] = threadOutput / FILTER_SIZE;
34 }

the case. Consider the round-robin input distribution we used in the k-Stencil example.

This distribution mimics the distribution of data across the banks in shared memory,

because, to the best of our knowledge, the number of banks in NVIDIA GPUs is the

same as the number of threads in a warp. Thus, when using the round-robin distribution,

the number of register cache conflicts will be exactly the same as the number of shared

memory conflicts.

Moreover, register cache might make it possible to reduce the number of conflicts

by using an alternative, application-optimized distribution of inputs. We leave this

optimization question for future work.

Performance improvement over shared memory The use of a register cache

may significantly improve application performance. The main benefits come from lower

latency of shuffle() operations versus shared memory accesses [nVi15], and higher

bandwidth to registers compared to shared memory [V. ].

As an illustration, we compare the performance of shared memory and register cache

implementations of the k-Stencil kernel. We find that the register cache implementation

achieves 64% higher throughput compared to the shared memory version for input sizes

of 227 elements.
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Thread coarsening One common technique in program optimizations is thread

coarsening [A. 13]. This technique increases the number of outputs produced by each

thread, and thus enables some of the data to be reused across iterations by storing it in

registers.

In the case of the register cache, thread coarsening is sometimes required in order to

achieve the desired performance improvements. The reason lies in the small number of

threads sharing the cache. Since the register cache is limited to the threads of a single

warp, only the inputs necessary for the warp threads are prefetched and cached. However,

the input reuse might occur across the warps. For example, for the k = 1-Stencil kernel,

the value array[0] in warp i is the same as array[31] in warp i−1; however, both warps

read it from the global memory. Thus, assuming the maximum of 32 warps in a T B, one

T B in a register cache implementation performs 34× 32 = 1088 global memory accesses,

which is 6% more than the global memory accesses in a shared memory implementation

with the same T B size. Moreover, the number of redundant memory accesses grows

with k, reaching 88% for k = 16.

Thread coarsening helps reduce the effect of redundant global memory accesses. In

Figure 5.2 we show the performance improvement due to computing more outputs per

thread (2,4,8 and 16) for the implementations using register cache and shared memory,

for different values of k. We see that the improvement due to thread coarsening is

almost negligible for the shared memory version, but it is significant for the register

cache. We note that with a single output per thread the shared memory version is

actually 1.8-2 times faster than the one using register cache for all k (not shown in the

graph). However with two and more outputs per thread, the register cache version is

faster.

High data reuse As with any cache, the effect of the register cache is amplified

with higher data reuse. Figure 5.3 shows the relative performance of the register cache

implementation of k-Stencil over the shared memory implementation for different k, as

a proxy for evaluating different amounts of data reuse. The speedup achieved by the

register cache is about 10% higher for k = 15 than for k = 1. Each thread computes 16

outputs.

5.2.3 Limitations

Access pattern known at compile time The register cache design may work only

for a shared memory access pattern known at compile time. The main reason is that a

thread must Publish its data exactly when the other threads need it, which requires

static provisioning of the respective

shuffle() calls. For memory accesses determined at runtime, such provisioning is

impossible.
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Figure 5.2: Speedup obtained from coarsening in the computation of 1− Stencil and
7− Stencil for register cache and shared memory implementation
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Figure 5.3: Speedup of the shuffle-based k-Stencil implementation over the shared
memory-based implementation as a function of k

Register pressure The register cache uses additional registers, and increases register

pressure in a kernel. Even though recent NVIDIA GPUs increase the number of hardware

registers per T B, the register pressure poses a hard limit on the number of registers

available for caching and must be considered to avoid spillage.
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Chapter 6

GPU - Finite Field Multiplication

In this chapter the GPU implementation of finite field multiplication in GF(2n) is

given. We present a sequential finite field multiplication algorithm, and then present a

parallelization for this algorithm dedicated to the GPU architecture when a large number

of multiplications takes place concurrently. Next we show how additional throughput

can be achieved by applying our register cache method shown in chapter 5.2 as well as

reducing shared-memory consumption and traffic. Finally, we evaluate the performance

of our implementation.

6.1 Sequential finite field multiplication

We now provide an efficient algorithm (Algorithm 6.1) for finite field multiplication,

one that reduces field multiplication to a small number of polynomial multiplications; it

requires a special standard basis, induced by a 2-gapped polynomial, defined next. In

this section we use the following notation: given a polynomial h(x) =
∑m

i=0 hix
i , we

define hba(x) =
∑b

i=a hix
i−a.

Definition 6.1.1 (2-Gapped Polynomial). A polynomial r(x) is 2-Gapped if the degree

of its second-largest term is at most bdeg(r(x))2 c, i.e., if r(x) = xn+r1(x) with deg(r1(x)) ≤
bn2 c.

Algorithm 6.1 performs GF(2n) multiplication by reducing it to 3 GF (2) [x] ring mul-

tiplications. Thus, the performance of field multiplication is determined almost entirely

by the complexity of multiplication of polynomials in the ring of polynomials. Therefore,

in the rest of the work we focus on the problem of fast polynomial multiplication on

GPUs.

6.1.1 The CPU CLMUL instruction

Finite field arithmetic, in particular GF(2n) multiplication, has received considerable

attention (cf. [J. 86,E. 96]) and has efficient CPU implementations in popular software
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Algorithm 6.1 Multiplication in GF(2n)

Input:
� a(x), b(x) of degree at most n− 1 in F2 [X].

� r(x) = xn + r1(x), 2-gapped polynomial in F2 [X] of degree n.
Output: h(x) = (a(x)� b(x)) mod r(x)

1: h(x)← a(x)� b(x)

2: h(x)← h
3n/2−1
0 (x)⊕ h2n−13n/2 (x)� r1(x)� xn/2

3: h(x)← hn−10 (x)⊕ h3n/2
n (x)� r1(x)

4: return h(x)

Algorithm 6.2 Näıve polynomial multiplication

Input:
a(x), b(x) of degree at most n− 1.

Output: c(x) = a(x)� b(x)
1: for i = 0, . . . , n− 1 do
2: ci ← 0
3: for j = 0, . . . , i do
4: ci ← ci ⊕ aj � bi−j
5: for i = n, . . . , 2n− 2 do
6: ci ← 0
7: for j = i, . . . , 2n− 2 do
8: ci ← an−1+i−j � bj−n+1

9: return c(x) =
∑2n−2

i=0 ci · xi

libraries like NTL [V. 03] and MPFQ 1. Moreover, in large part because of the importance

of GF (2n) multiplication, Intel introduced in 2010 a dedicated CPU instruction set

extension CLMUL, which performs GF (2) [x] ring multiplication of polynomials of degree

up to 64 in 7–14 cycles [Fog16].

Both NTL and MPFQ use this dedicated instruction. This instruction can be used

to multiply polynomials of higher degree, thereby supporting GF (2n) multiplication for

values n > 64 (cf. [C. 12] for one such implementation).

6.1.2 Sequential polynomial multiplication

The complexity of polynomial multiplication has been extensively studied. The number

of bit operations performed by näıve Algorithm 6.2 is O
(
n2
)
. More sophisticated

algorithms by Karatsuba [KO63] and by Schonhage and Strassen [SS71, D. 91] are

asymptotically faster, requiring O
(
nlog2 3

)
and

O(n log n log logn) bit operations, respectively.

In this work we use the näıve Algorithm 6.2 because it is the fastest for polynomials

of degrees below 1000 [M. 05] and its simplicity makes it a prime starting point for

study.

1http://mpfq.gforge.inria.fr/doc/doc.html
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Figure 6.1: Illustration of the access pattern of the multiplication algorithm for GF
(
24
)

withW =4. Each frame encloses the indexes of rows in A and B accessed for computing
the respective rows ci specified on the top. Tid denotes the thread index in the warp.

The following simple equation, which explicitly computes coefficients of the output

polynomial, will be used later to balance work in the GPU.

ck =

{ ∑k
i=0 ai · bk−i k ≤ n− 1∑2n−2
i=k an−1+k−i · bi−n+1 k > n− 1

(6.1)

6.2 Parallel polynomial multiplication

We consider the problem of performing multiplication of a large number of pairs of

polynomials.

A näıve, purely data-parallel approach is to assign a single multiplication of two

polynomials to one thread. Here, each polynomial of degree n− 1 is represented as a bit

array of size n, where the ith element represents the coefficient of xi in the polynomial.

This solution is highly inefficient, however. On a platform with B-bit registers and

ALUs, performing single-bit operations uses only 1/B of the computing capacity. We

therefore develop an alternative algorithm which eliminates this inefficiency.

6.2.1 Bit slicing

We reorganize the computation such that one thread performs bit-wise operations on

B bits in regular registers, effectively batching multiple single-bit operations together.

This technique, which packs multiple bits for parallel execution, is often called bit-

slicing [Wik].

To employ bit-slicing for polynomial multiplication, we first introduce a new data

structure, a chunk, to represent multiple polynomials, and then reformulate the multi-

plication algorithm using chunks.
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Figure 6.2: Polynomial addition in 4-bit chunks. Computing the output chunk requires
3 bit-wise XORs, each performing 4 concurrent ⊕ operations.

Definition 6.2.1 (Chunk). A chunk is an n × B matrix M of bits that represents a

set of B polynomials P (i), i ∈ {0, . . . ,B − 1} of degree less than n. We denote the jth

column in M by M j , and the ith row by Mi. M
j represents the coefficients of the jth

polynomial in the set. In other words, A(i) =
∑n−1

i=0 M
j
i x

i.

To explain how to compute using chunks, we first consider polynomial addition. It

is easy to see that it can be performed by bit-wise XOR of the respective rows of the

input chunks A and B. Thus, a single Ai ⊕ Bi computes the ith coefficients for all B
output polynomials at once. Figure 6.2 shows two input chunks A,B, and the chunk

representing their sum A⊕B. Each chunk represents 4 polynomials of degree 3. For

example, A1 represents polynomial x2. Figure 6.2 also shows an example of polynomial

addition using chunks, assuming B = 4.

Similarly, it is straightforward to extend the single-bit polynomial multiplication

Algorithm 6.2 to use chunks. This is done by replacing the references to individual

bits in lines 2,4,6 and 8 with the references to chunk rows, and replacing single-bit

operations with bit-wise operations.

6.2.2 Parallel polynomial multiplication using chunks

We show how to parallelize chunk-based polynomial multiplication. We seek a parallel

algorithm that enables efficient, divergence-free execution by the threads of a single

warp, which is the key to high performance on GPUs.

A simple parallelization whereby one thread computes one row in the output chunk

is inefficient due to divergence among the threads. As we see from Eq. 6.1, different

coefficients in the output polynomial require different numbers of computations. For

example, computing the coefficient of x2 requires only three ⊕ operations, while com-

puting the one for x3 requires four. Thus, different threads in a warp would perform

different numbers of operations, resulting in divergence.

The key to achieve load-balanced execution among the threads is to realize that

pairs of coefficients require exactly the same number of computations in total, as we

show below.
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Denote by Add(k) and Mul(k) the number of ⊕ and � operations respectively to

compute the kth coefficient in the output polynomial. From Eq. 6.1 we derive that

Add(k) = min{k, 2n − 2 − k}, Mul(k) = min{k + 1, 2n − 2 − k + 1} = Add(k) + 1.

Therefore Add(k) and Mul(k) are symmetric around n − 1. Consequently, for each

0 ≤ k < n Add(k) +Add(k + n) = n− 2, Mul(k) +Mul(k + n) = n

We conclude that the number of computations needed to compute both coefficients

k and k + n together is exactly the same for all k. Therefore, allocating such pairs

of coefficients to be computed by each thread will balance the load perfectly among

the threads. Note that computations always interleave bitwise ⊕ and � operations;

therefore there is no divergence as long as the number of such operations in all threads

is the same.

In summary, our parallel polynomial multiplication algorithm allocates each thread

in a warp to compute one or more pairs of rows (k, k +N) in the output chunk. Each

thread computes the coefficients of B polynomials at once, thanks to bit-slicing.

We illustrate the execution of the algorithm for GF
(
24
)

and W = 4 threads per

warp as an example in Figure 6.1.

Implementation The implementation closely follows the algorithm. We dedicate one

warp to compute 2W rows in the output chunk C. All the rows in the input are accessed

by all the threads, and therefore they are prefetched into shared memory. Figure 2 lists

the implementation for a single warp, assuming W =N=32. For clarity we split the

implementation into two separate loops (line 15 and 22), each computing one output

row. This leads to divergence in practice, so in the real implementation these two loops

are merged.

Limitations The algorithm achieves divergence-free execution when invoked for poly-

nomial multiplication in GF
(
2N
)

when N |W, i.e., 32, 64, 96. We leave the question of

efficient multiplication of polynomials of other degrees to future work.

6.3 Polynomial multiplication using register cache

In this section we apply the register cache methodology presented in Section 5.2 to speed

up ring multiplication (Listing 3) and compare it (here and later) to the less efficient

and simpler shared memory implementation (Listing 2). To describe the register cache

optimizations, we focus on a single warp performing multiplication of polynomials of

degree n=W =32. We then discuss the application of this method to polynomials of

higher degree.

We start with the shared memory implementation described in Section 6.2.2.

Step one: Identify warp inputs in shared memory Since each warp is dedicated

to the calculation of a single product of two chunks, each warp reads only its input
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Listing 2 Multiplication of polynomials of degree 32 in a warp using shared memory.
1 __global__ void multiply_shmem(
2 int* A, B, C,
3 int N)
4 {
5 __shared__ int sA[32];
6 __shared__ int sB[32];
7 int output=0;
8 int lindex = threadIdx.x & (WARP_SIZE - 1);
9

10 // PREFETCH
11 sA[lindex]=A[lindex];
12 sB[lindex]=B[lindex];
13 __syncthreads();
14

15 for (int i=0;i<=lindex;i++){
16 int a = sA[i];
17 int b = sB[lindex-i];
18 output ^= a&b;
19 }
20 C[lindex]=output;
21 output=0;
22 for (int i=lindex+1;i<N;i++){
23 int a = sA[i];
24 int b = sB[N-1+lindex-i];
25 output ^= a&b;
26 }
27 C[lindex+N]=output;
28 }

chunks.

Step two: Distribute inputs among warp threads The rows in chunks are

distributed in a round-robin fashion across the warp threads. For each of the two input

chunks, thread ` stores all the chunk rows t such that ` ≡ t mod w. Conveniently, since

W = n, thread i stores rows Ai and Bi of the respective chunks.

Step three: Split the algorithm into communication and computation steps

Each thread communicates with the other threads to obtain the operands of each �
operation. Therefore, each � is a computation step that is preceded by a communication

step in which the operands are received. We refer to two such steps together as an

iteration, because they correspond to one iteration of the loops in lines 15 and 22 in

Listing 2.

We first determine the data accessed by each thread. We derive this from the

accesses to shared memory in lines 16-17 and 23-24 in Listing 2. Due to the round-robin

data distribution we use, and since the number of rows in each chunk equals the number

of threads, the indexes in shared memory coincide with the warp indexes of the threads

holding the data.

Now we derive which data must be published by each thread in each iteration.

Figure 6.1 is useful to reason about this. We see that the value of Ai, stored in thread

i, is needed by all the threads only in iteration i, and hence each thread must publish it

in iteration i.

Bi, however, is read by different threads in different iterations. For example, B0 is
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Listing 3 Multiplication of polynomials of degree 32 in a warp using the register cache.
1 __global__ void multiply_reg_cache(
2 int* A, B, C,
3 int N)
4 {
5 int a_cached, b_cached, output=0;
6 int lindex = threadIdx.x & (WARP_SIZE - 1);
7

8 // PREFETCH
9 a_cached=A[lindex];

10 b_cached=B[lindex];
11

12 for (int i = 0 ; i < N ; i++)
13 { //COMMUNICATE
14 int a = __shfl(cached_a,i);
15 int b = __shfl(cached_b,lindex-i);
16 //COMPUTE
17 if (i <= lindex) output ^= a&b;
18 }
19 C[lindex]=output;
20 output=0;
21 for (int i = 0; i < N ; i++){
22 int a = __shfl(cached_a,i);
23 int b = __shfl(cached_b,N-1+lindex-i);
24

25 if (i > lindex) output ^= a&b;
26 }
27 C[lindex+N]=output;
28 }

used by thread 0 in the first iteration, thread 1 in the second, and so on. Thus, thread i

must publish Bi in each iteration.

The computation in each iteration remains the same as in the shared memory version.

Replacing each communication step with shuffles To use shuffle(), we must

align each Read and Publish operations in each communication step. To simplify, we

consider the case in which we first align all accesses to B and then to A.

Aligning accesses to B is straightforward, because (1) each thread publishes its single

cached value and reads one value in every iteration, and (2) no two threads require two

different values at once from the same thread (which would result in a conflict).

The accesses to A cause a problem, because each thread publishes only in one

iteration, but reads in each iteration. The solution is to simply duplicate the Publish

operation to each iteration, even though it is redundant.

The complete algorithm is presented in Listing 3, side-by-side with the shared

memory implementation in Listing 2 for comparison.

6.4 Extending to polynomials of larger degrees

We now extend the register cache-based multiplication implementation described in the

previous section to polynomials of larger degrees. Doing so requires us to cope with the

challenge of limited register space.

The shared memory algorithm in Listing 2 can be extended to up to n = 1024 by

adding more warps, each using the same code structure. The register cache, however, is
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applicable only within a single warp. Therefore such a simple extension does not work

for the optimized algorithm.

However, extending the register cache for higher degree polynomials is problematic

in other ways as well. Caching these large polynomials requires more register space.

Thus, at a certain threshold n0, high register pressure results in register spillage to global

memory, thereby rendering the register cache method described above inapplicable. We

found empirically that the threshold is n0 = 64.

In order to efficiently multiply polynomials of degree n > 64, we develop a hybrid

solution that uses the efficient register cache-based implementation for multiplying

polynomials of lower degree. The idea is to use the lower-degree multiplication as a

building block for multiplying polynomials of higher degrees, at the expense of employing

shared memory.

The full description of this algorithm is omitted for lack of space. But we now

explain the main idea behind it, by showing how to multiply degree-64 polynomials

using multiplication of degree-32 polynomials as a building block.

Let a(x) =
∑
aix

i and b(x) =
∑
bix

i be two polynomials of degree 64 that we wish

to multiply. Denote the efficient procedure for multiplying two polynomials of degree

32 by mult32(). We can represent a(x) = a0(x) + x32a1(x), where a0(x) =
∑31

i=0Aix
i

and a1 =
∑63

i=32 x
i. Observe that a0 and a1 are two polynomials of degree at most 31.

Using the same representation for b(x), we obtain a(x)� b(x) = (a0(x) + x32a1(x))�
(b0(x) + x32b1(x)) =

mult32(a0(x), b0(x)) + x32mult32(a1(x), b0(x)) +

x32mult32(a0(x), b1(x)) + x64mult32(a1(x), b1(x)).

There are many possible implementations of this idea and those we are aware of use

shared memory. We choose to implement one such solution that uses two warps. The

first warp computes mult32(a0, b0) and mult32(a1, b0), and the second one computes

mult32(a0, b1) and mult32(a1, b1). Since the input is reused across the warps, it is

stored in shared memory. In addition, each warp stores its output in shared memory, so

the two warps can combine the results of mult32(a0, b1) and mult32(a1, b0).

We use the same principle to implement multiplication for polynomials of higher

degree.

6.4.1 Performance comparison of the different designs

We would like to compare the relative speedup offered by the hybrid algorithm over

the purely shared memory implementation, and over the implementation that uses the

register cache only. Comparing these three designs is possible only for n ≤ 64 because,

as mentioned, register pressure in the register cache version results in register spillage.

In our implementation, the naive shared memory version runs in two warps. The

hybrid mult32-based implementation uses the mult32 function internally, and uses

shared memory to share input and intermediate outputs between warps. Finally, the
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Listing 4 Ring multiplication of just of large degrees using ring multiplication of chunks
of degree 32 as a building block.

1 // Rounds up N to the smallest multiplication
2 // of 32 larger than or equals to N.
3 #define ROUNDED(N) ((((N)+31)/32)*32)
4

5 // Brief: Performs ring multiplication of chunks A and B.
6 // Input: A,B - Chunks of degree N stored using ROUNDED(N)
7 // entries in shared memory each.
8 // B is stored right after A in shared memory.
9 // tempChunk - A chunk of degree 64, stored in shmem.

10 // unique chunk for each warp.
11 // myIdxInGroup - The index of a thread within all threads
12 // that cooperate in the multiplication of A and B.
13 // myIdxInWarp - Index of the thread within its warp.
14 // warpInGroup - Index of this thread’s warp within
15 // all warps that cooperate in the multiplciation of
16 // chunks A and B.
17 // Output: Ring multiplication of A and B stored in chunk C.
18 template<unsigned int N>
19 __device__ inline void finiteFieldMultiply(
20 unsigned int A[ROUNDED(N)],
21 unsigned int B[ROUNDED(N)],
22 unsigned int C[2 * ROUNDED(N)],
23 unsigned int temp[64],
24 unsigned int myIdxInGroup,
25 unsigned int myIdxInWarp,
26 unsigned int warpInGroup)
27 {
28 for (unsigned int i = 0 ; i < ROUNDED(N)/32 ; ++i)
29 {
30 // Each warp multiplies two chunks of degree 32:
31 // 1) In A: entries (32*warpInGroup,...,32*warpInGroup + 31)
32 // 2) In B: entries (32*i,...,32*i + 31)
33 // Output is written to tempChunk.
34 multiply32Ring(tempChunk, &A[32 * warpInGroup], &B[32 * i]);
35

36 //
37 C[32*(i+warpInGroup) + myIdxInWarp] ^= tempChunk[myIdxInWarp];
38 __syncthreads();
39

40 // Then write the upper 32 entries to the shared memroy.
41 C[32*(i+warpInGroup) + myIdxInWarp + 32] ^= tempChunk[myIdxInWarp + 32];
42 }
43 }

optimized degree-64 multiplication uses register cache natively, without shared memory.

In this implementation each thread stores 4 input coefficients and produces 4 outputs.

The results of the comparison are presented in Table 6.1 and demonstrate the benefits

of using register cache. We observe that the shared memory (shmem) implementation

is about 3.5 times slower than the one using register cache (rcache). The hybrid version

(mult32) achieves 2.6 times faster execution over shmem, and about 30% slower than

the optimal rcache version.

These results also indicate that the best building block for the hybrid algorithm is

the multiplication kernel of the largest degree that fits in the register cache. Therefore,

we use n-64 polynomial multiplication and evaluate its performance in Section 8.

6.4.2 Application to larger fields

The shared memory based multiplication requires 16n bytes of shared memory. In

a GPU with up to 48KB of shared memory per T B for full occupancy (as NVIDIA
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Version Throughput Shared memory Reg/Thread
(mult/s ×109) accesses

shmem 1.04 16384 25
mult32 2.7 512 30
rcache 3.6 0 32

Table 6.1: Performance of three different implementations of 64-degree polynomial
multiplication.

Titan-X), we are limited to fields of size < 23072. With the register cache we use half

the amount of shared memory, and therefore can implement multiplication in fields as

large as GF
(
26144

)
.

However, we do not implement it for fields larger than GF
(
22048

)
. For larger

fields the hybrid algorithm outlined here with asymptotic running time O(n2) becomes

relatively inefficient when compared to the more sophisticated Karatsuba algorithm, as

detailed in Section 8.

6.4.3 Using shared memory only for the output

We now present another optimization intended to reduce the amount of shared memory

allocated for a ring multiplication. Therefore, this optimization reduces the amount of

shared memory allocated to finite field multiplication as well. This optimization uses

the degree-32 ring multiplication of chunks based on register cache and does not work

when a degree-32 ring multiplication based on shared memory is used.

In the previous section we showed that to perform polynomial multiplication of

chunks of degree n using the degree 32 polynomial multiplication as a building block.

We have also stated there that the degree 32 polynomial multiplication can be performed

either by shared memory based multiplication or using the shared-memory free version

that is shuffle based. In both ways the presented implementation stores in shared

memory 2 chunks of degree n and an additional chunk of degree 2n that stores the

output of the multiplication which is in total nB
2 bytes of memory.

In this section we show how we reduce the amount of shared memory when using

the shuffle-based version of the degree 32 polynomials multiplication by half. We recall

that this version is shared memory free and utilizing the characteristic is crucial in the

improvement.

The multiplication will be in place, which means that the output of the multiplication

will be written straight into where the input was written in shared memory.

First, since the output is degree 2n chunk and we wish to write it exactly where the

input resided in the beginning of the algorithm we the chunks in shared memory that

store the inputs will be consecutive in the memory. This requirement is reasonable and

can be easily programmed, we will not discuss this requirement along the rest of the

algorithm and assume that chunk a is followed in memory by chunk b.
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Recall the algorithm in listing 4 in which the used degree 32 polynomial multiplication

building block is the shuffle based one. In this algorithm each warp that participates

in the multiplication of two chunks stores, distributively, a chunk of degree 32. We

know that all entries in the input chunk a will be stored in one of these warps and we

know that after this single reading from a no additional reads will be done from A at

all along the algorithm. Therefore, we can use A to store the lower half of the output

(coefficients of x0, . . . , xn−1) and B to store the upper half of the output. In the first

step of the iteration, we take the first 32 entries of b and load them distributively into

the registers of all warps. At this moment the first 32 entries of b will never be read

again. Therefore the first n+ 32 at this moment are free for output to be written to

them. At this point each warp multiplies its part of a by the first 32 entries of b that

are stored in its registers and the total output of all warps exactly fits into the first

n+ 32 entries of the output, the result will still be written in two phases as described

in previous section, each warp with 64-degree polynomial it wants to add to the output

first adds the lower 32 entries of the output it stores to the correct entries in the shared

memory, then a barrier is applied and then the upper 32 entries each warp holds will be

added to the correct entries in the shared memory. The full implementation is given in

listing 5.

Notice that if we didn’t use the shuffle-based communication, we would be able

to write our result to c without overriding entries from a subchunk of b that we still

need for the multiplication since we don’t store them in our registers. We can also

use this ring multiplication as a building block in the ring multiplication based finite

field multiplication as described in algorithm 6.1 to cut in half the shared memory

consumption of the finite field multiplication as well.
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Listing 5 In-place ring multiplication of chunks.
1 // Rounds up N to the smallest multiplication
2 // of 32 larger than or equals to N.
3 #define ROUNDED(N) ((((N)+31)/32)*32)
4

5 // Brief: Performs ring multiplication of chunks A and B.
6 // Input: A,B - Chunks of degree N stored using ROUNDED(N)
7 // entries in shared memory each.
8 // B is stored right after A in shared memory.
9 // myIdxInGroup - The index of a thread within all threads

10 // that cooperate in the multiplication of A and B.
11 // myIdxInWarp - Index of the thread within its warp.
12 // warpInGroup - Index of this thread’s warp within
13 // all warps that cooperate in the multiplciation of
14 // chunks A and B.
15 // Output: Result is stored as a chunk in the same memory
16 // A and were stored in.
17 template<unsigned int N>
18 __device__ inline void finiteFieldMultiply(
19 unsigned int A[ROUNDED(N)],
20 unsigned int B[ROUNDED(N)],
21 unsigned int myIdxInGroup,
22 unsigned int myIdxInWarp,
23 unsigned int warpInGroup)
24 {
25 unsigned int my_a;
26 unsigned int my_b;
27 unsigned int my_c[2];
28

29 // READ step: Each warp reads coefficients
30 // (warpInGroup * 32,..., warpInGroup * 32 + 31)
31 // into registers.
32 my_a = A[warpInGroup * 32 + myIdxInWarp];
33

34 // All entries of A are stored in registers, we nullify
35 // the shared memory in which A was stored.
36 A[warpInGroup * 32 + myIdxInWarp] = 0;
37

38 for (unsigned int i = 0 ; i < ROUNDED(N)/32 ; ++i)
39 {
40 for (unsigned int j = 0 ; j < 4 ; ++j)
41 {
42 my_c[i] = 0;
43 }
44

45 // READ step - Reading coefficients (32*i,...,32*i + 31).
46 my_b= B[32*i + myIdxInWarp];
47 __syncthreads();
48

49 // First warp nullifies the entries of B that
50 // were read in this iteration.
51 // They will now be used to store the output.
52 if(warpInGroup == 0)
53 {
54 B[32*i + myIdxInWarp] = 0;
55 }
56 __syncthreads();
57

58 // Each warp multiplies to chunks of degree 32 it stores.
59 // Output is stored in my_c.
60 // Multiplication is shuffle based.
61 multiply32Shuffle(my_c, my_a, my_b);
62

63 // Each warp distributively stores in my_c a chunk
64 // of degree 64.
65 // To avoid write access collisions, first add
66 // lower 32 entries to the result in shared
67 // in shared memory and syncrhonize.
68 A[32*(i+warpInGroup) + myIdxInWarp] ^= my_c[0];
69 __syncthreads();
70

71 // Then write the upper 32 entries to the shared memroy.
72 A[32*(i+warpInGroup) + myIdxInWarp + 32] ^= my_c[1];
73 }
74 }
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Chapter 7

Implementation of the FFT

algorithm on GPU

In this section we will depict in detail an efficient parallel implementation of algorithm 3.5

on the GPU architecture. First, we introduce the general outline of the implementation

and the main phases that compose it, then we will elaborate the implementation of

each phase separately.

7.1 Outline of the Implementation

Algorithm 3.5 is recursive. Unfortunately, recursion would have severely impaired the

implementation’s performance. Instead the algorithm’s implementation begin with

a series of d splitting iterations within a loop. At the first iteration the input is a

polynomial g where 2d ≤ deg(g) < 2d+1 represented as a sequence of 2d+1

B chunks with

kth element in the series of chunks is a finite field element that represents gk−1 - the

coefficient of xk−1 in g. In figure 7.1 an array of chunks G is presented. At its first

entry, elements g0, . . . , gB−1 reside. At the second entry gB, . . . , g2B−1 and so on.

2 2
dg - 2 1

dg -

2 1Bg -

1Bg -1
g

0
g

1Bg +Bg

G

[ ]0G

[ ]1G

2 1
d

G
B

é ùê ú-
ê úê ú
ë ûë û

Figure 7.1: Storage of Coefficients of Input FFT Polynomial in Chunks

We will denote the input polynomial g as g0,0 which along the first iteration will be

processed as described in algorithm 3.5 and will be detailed in this section. At the end

of algorithm 3.5 the polynomial is split into two polynomial on which FFT is computed
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recursively. In our implementation, at the end of the iteration the polynomial is split

into two polynomials g1,0, g1,1 where 2d−1 ≤ deg(g1,i) < 2d and FFT is evaluated on

both of them over the same subspace as described in algorithn 3.5. Those evaluations

will be in parallel.

The next iterations are implemented in the same manner, the input to the ith iteration

will be a series of polynomials gi,0, . . . , gi,2i−1 where 2d−i ≤ deg(gi,j) < 2d−i+1that are

represented as an array of 2d+1

B chunks. The polynomials will be stored in the same

array of chunks, such that the first 2d−i+1 elements in will represent the first polynomial,

the following 2d−i+1 will represent the second polynomial and so on. The GPU will

process in parallel gi,0, . . . , gi,2i−1 as described in 3.5 in 3 steps,

1. Shift phase (Algorithm 3.5, step 2) in which we take the polynomial gi,j(x) and a

basis element β and calculate the new polynomial si,j(x) = gi,j(βx).

2. Taylor Expansion Phase (Algorithm 3.5, step 3) the which we calculate the Taylor

Expansion of the polynomial at
(
x2 − x

)
. The output to this phase is in the same

structure as the input, composed of pairs of elements where the kth pair is the

linear function ai,j,k + bi,j,k ·x which is the coefficient of
(
x2 − x

)i
in the calculated

Taylor Expansion and si,j =
∑2i−1−1

k=0 (αi,j,k + βi,j,k · x) ·
(
x2 − x

)i
3. Shuffle Phase (Algorithm 3.5, step 4) in which we take the Taylor Expansion

calculated in the previous step and calculate from it the two new polynomials

gi+1,2j , gi+1,2j+1 by performing the shuffle permutation on the input, taking all

evenly indexed elements (i.e. all αi,j,k) and putting them, in order, at the first half

of the output so they will represent the polynomial gi+1,2j and the oddly indexed

element (i.e. all bi,j,k) and putting them, in order, at the second half of the output

so they will represent the polynomial gi+1,2j+1.

At the end of the iteration, from each polynomial gi,j two new polynomials are

created,gi+1,2j and gi+1,2j+1. These polynomials will be part of the input of the next

iteration.

At the end of all iterations we have 2d linear functions (i.e polynomials of degree at

most 1). gd,0, . . . , gd,2d−1 , then we will perform in parallel the linear evaluation phase

(Algorithm 3.5, step 1) for gd,j . This evaluation will give an output denoted by ed,j the

evaluation of linear function gd,j over a subspace with two elements {0, u} where ed,j is

represented as two elements. First the evaluation of the linear function over 0 and the

over u. The output of the whole phase is represented with 2d+1

B chunks composed as the

concatenation of all evaluations.

Now we will iteratively ”fold” the recursion, with another loop of d merge iterations,

the input to each iteration is a series of evaluations ei,0, . . . , ei,2i−1 which are the

evaluations of gi,0, . . . gi,2i−1 and in parallel for each consecutive pair of evaluations

ei,2j , ei,2j+1 wes will calculate ei−1,j in the merge phase (Algorithm 3.5, step 10).
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Figure 7.2: Outline of the FFT Algorithm

In figure 7.2 an outline of the algorithm as described above is presented, the flow

of the algorithm is described in figure from the top to the bottom and in figure 7.3 a

single split iteration is depicted.

1,2i j
g + 1,2 1i j

g + +
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Taylor Expansion Phase
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b , ,1i j

b 1, ,2 1i
i j
b - -

( ),i jg x

( ),i js x

Figure 7.3: Outline of a Single Split Iteration

Along the algorithm there are many uses of affine subspaces composed of subspaces

B and G and affine shifts sB and sG (using the notation from 3.5). The shifts and the

elements spanning the subspaces will be kept in a designated array and since they are
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not a function of the input polynomial they will be pre-calculated, assuming the affine

space is known beforehand. We will also maintain for each subspace an array of chunks

such that the ith finite field element in the array of some subspace B is B[i].

Notice that also D and sD are used, but only as inputs to the recursive calls so each

D and sD are in turn the B and sB of the next recursive step.

In the following sections we will depict the details of implementation of each phase.

7.2 Set Up for GPU

At the beginning the algorithm gets as input an array of finite field elements. As

previously stated, assume that each finite field element e =
∑n−1

i=0 aix
i in GF(2n) is

represented as an array of n/8 bytes where jth bit in ith entry represents a8i+j .

Our goal in the setup phase is to change the representation of the given polynomial

into an array of chunks. The kernel that does that assigns a warp for each B elements

in the input polynomial. So warp i will be responsible for grouping elements B · i to

B · (i+ 1)− 1 into a single chunk . Thread of index j in warp i will be responsible for

writing rows j, j +W, . . . of that chunk.

First, in order for the GPU to be able to process the given array, we copy the whole

polynomial into the GPU.

The algorithm is quite simple, at the beginning thread t in the warp will copy element

t, t+W, . . . from the elements which its warp is responsible for into the shared memory

into a designated array. After that thread t extracts the ith bit from all elements, writing

the ith bit of the jth element into the jth bit of the ith row of the output answer, for

i = t, t+W, . . . and j = 0, 1, ...,B − 1.

After the algorithm is done, we remove original polynomial from GPU as we won’t

need it anymore and we will copy to the GPU memory the arrays of chunks for each

subspace used along the algorithm as described above.

7.3 Shift Phase

In this phase we are given as input an array of finite field elements stored in chunks,

representing a series of 2t polynomials gt,0, . . . , gt,j of degree at most 2d − 1. At the

beginning of the algorithm, t = 0 hence we have a single polynomial, at each recursive

call each polynomial is split into two polynomials as described in the shuffle phase

(section 7.5).

For each polynomial gt,j(x) =
∑2d−1

i=0 aix
i we have to calculate st,j(x) = gt,j(βmx)

where βm is an element spanning affine subspace B over which we evaluate gt,j(x). By

calculating g(βmx) we mean having in memory the polynomial gt,j(βmx) represented

in chunks, so the ith finite field element will represent the coefficient of xi of that
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polynomial. Notice that,

st,j = gt,j(βmx) =
2d−1∑
i=0

ai(βmx)i =
2d−1∑
i=0

βimaix
i

The new coefficient of xi is ai · βim, so our algorithm will multiply the ith coefficient by

βim. As βm is known beforehand and is independent of the input polynomial, we will

precompute an array of chunks A of length max (1, b2d/Bc) with 2d finite field elements

such that the ith finite field element stored there will be βim.

If 2d < B then this array will be composed of a single chunk and the ith coefficient

(i.e. βim) will be element i, i+ 2d, . . . . For example if B = 32 and 2d = 8 then a0 will be

in elements 0, 8, 16, 24 of the chunk and a5 will be in elements 5, 13, 21, 29 of the chunk.

In the algorithm it self each warp number i is responsible for multiplying chunk B[i] by

chunk A[i mod 2d] using the GPU implementation of algorithm 6.1 given at chapter 6.

7.4 Taylor Expansion Phase

In this phase we get as input an array of chunks B representing 2t polynomials

st,0, . . . , st,2t−1 of degree < 2d each (d ≥ 2). The goal of this phase is to calculate

the Taylor Expansion at
(
x2 − x

)
of each of the given polynomials using Algorithm

3.4. That is, we would like to find linear functions hi,j,0(x), . . . , hi,j,2d−1−1 such that

si,j(x) =
∑2d−1−1

k=0 hi,j,k(x) ·
(
x2 − x

)k
and hi,j,k(x) = αi,j,k + βi,j,k · x.

The format of the requested output is a sequence of pairs αi,j,k, βi,j,k, in chunks,

ordered by k. The first B elements will be in the first chunk, the next B elements will

be in the second chunk and so on.

The Taylor Expansion algorithm is implemented as follows. Given a polynomial

gi,j(x) of degree < 2d write it as

p(x) = t0(x) + x2
d−2

t1(x) + x2
d−1

t2(x) + x3·2
d−2

t3(x) ,deg(pi) < 2d−2 (7.1)

So,

T (p, 2d) =
(
T
(
t0 + (t1 + t2 + t3)x

2d−2
, 2d−1

)
, T
(

(t2 + t3) + t3 · x2
d−2

, 2d−1
))

(7.2)

Figure 7.4 demonstrates how t0, t1, t2 and t3 compose si,j(x) and how the Taylor

Expansion is calculated. First, we add for each k the kth element in t3 to the kth element

in t2. Then, we add the kth element in the sum of t2 + t3 to the kth element in t1. We

split the elements into two halves and calculate iteratively and in parallel the same

algorithm on both halves as long as each contains at least 4 elements. We will now get

into the deep details of what each thread performs along the algorithm.

The algorithm is performed in three different kernels, to deal with the following

three situations that come up along the algorithm, in any of which the amount of data
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Figure 7.4: Outline of the Taylor Expansion Algorithm

each warp has to process is different but all implement the same basic idea presented

above.

1. The first kernel will assume that 2d/B ≥ 4, so each pi(x) is represented using

at least 4 chunks. The kernel is repeated until the polynomials don’t meet the

criterion stated above. Iteratively each polynomial takes c = 2d/B chunks and c/4

warps will be processing it. Each polynomial p(x) in each iteration will be written

as in Equation 7.1 so t0 is represented using the first c/4 chunks, the next c/4

chunks represent t1 and so on. Warp number i among all warps that process that

same polynomial p(x) will take the ith chunk representing t3, t2 and t1, denoted

by D[i], C[i] and B[i] respectively and thread j will perform for all k ∈ Rj

(a) C[i]k ← C[i]k ⊕D[i]k. (t2 ← t2 + t3)

(b) B[i]k ← B[i]k ⊕ C[i]k. (t1 ← t1 + t2)

2. The second kernel assumes that 2d/B = 2, so in this case pi(x) is represented

by exactly two chunks A, that stores t0 and t1 and B, that stores t2 and t3 as

described in Equation 7.1. The kernel is invoked once and the output of it are

polynomials that are represented using exactly one chunk. Each thread j will

perform for all rows number k ∈ Rj the following,

(a) Add (Xor) the most significant B/2 bits of Bk into the least significant B/2

bits of Bk.
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(b) Add (Xor) the least significant B/2 bits of Bk into the most significant B/2

bits of Ak.

3. The third kernel assumes that 2d/B ≤ 1, so in this case pi(x) is represented in a

single chunk A that stores 2p polynomials, one of them is pi(x). In this case for

each chunk will be processed by a single warp. The kernel is invoked repeatedly

until the polynomials are of degree 2. Each thread j will perform for all rows

number k ∈ Rj the following,

(a) Add (Xor) the bits that represent t3 of all polynomials within the chunk with

the bits that represent the t2 of the same polynomial.

(b) Add (Xor) the bits that represent t2 of all polynomials within the chunk with

the bits that represent the t1 of the same polynomial.

These operations can be done efficiently with simple bit-wise operations.

Once all executions of the third kernel are done, the phase is finished and the output

is given as described above.

7.5 Shuffle Phase

On this phase we are given as input the output of previous phase,
αt,0,0 βt,0,0 αt,0,1 βt,0,1 . . . αt,0,2d−1 βt,0,2d−1

αt,1,0 βt,1,0 αt,1,1 βt,1,1 . . . αt,1,2d−1 βt,1,2d−1
...

...
...

...
. . .

...
...

αt,2t−1,0 βt,2t−1,0 αt,2t−1,1 βt,2t−1,1 . . . αt,2t−1,2d−1 βt,2t−1,2d−1


Where each line represents the Taylor-Expansion of one polynomial. The output of this

phase is gt+1,2i(x) and gt+1,2i+1 for each polynomial gt,i(x) , define as,

gt+1,2i(x) =
∑2d−1

j=0 αt,i,jx
j , gt+1,2i+1(x) =

∑2d−1
j=0 βt,i,jx

j

So in each polynomial pi(x) in this phase we will move the αi,j to the first half of

elements and the βi,j to the last. The expected output is the following,
α0,0 α0,1 . . . α0,2d−1 β0,0 β0,1 . . . β0,2d−1

α1,0 α1,1 . . . α1,2d−1 β1,0 β1,1 . . . β1,2d−1
...

...
. . .

...
...

...
. . .

...

α2t−1,0 α2t−1,1 . . . α2t − 1, 2d − 1 β2t−1,0 β2t−1,1 . . . β2t−1,2d−1


In other words, we perform a permutation on each line taking all even indexed elements

to the first half with respect to their original order and taking all odd indexed elements
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to the second half with respect to their original order as well. This permutation

πd : [2d+1]→ [2d+1] is defined as follows,

πd(i) =

{
i
2 i is even

2d + i−1
2 otherwise

To permute these elements which reside inside chunks, we will perform the permu-

tation for all rows (polynomials) in parallel. (e.g. to move the second element in the

third chunk to the fourth element in the second chunk we have to move the second bit

in all rows of the third chunk to the fourth bit of all rows of the second chunk). At

first thought, the easiest and fastest algorithm to perform this permutation is allocating

more memory space and copying, in parallel, element i to its index πd(i) in the allocated

array. However, this turns out to be a bad solution in the given representation with

chunks because of two main reasons,

1. Processing each bit of each element separately will ignore the ability of each thread

to process B bits at the same time, impairing the performance.

2. Each row of each chunk at the output is affected by several different rows and

chunks in the input. The same holds for each row of each chunk of the input,

affecting several rows and chunks at the output. If different threads will process

different rows and chunks concurrently, means of synchronization will have to be

considered, this will impair the performance as well.

The algorithm we suggest is based on the following three sub-phases,

1. Let σ2, σ4, σ8 . . . σB
2

be the following permutations over [B],

σd(i) =


i− d

2

⌊
2i
d

⌋
≡ 2 ( mod 4)

i+ d
2

⌊
2i
d

⌋
≡ 1 ( mod 4)

i otherwise

As shown in figure 7.5 the permutation σd is applied on the elements of the chunk

denoted by A by partitioning the chunk into parts of 2d elements. Each part is

then partitioned into 4 sections. The permutation exchanges the elements in the

second and third sections of each part.

Let us now explain what each permutation does. Assume 2d+1 ≥ B and let

elements α0, β0, . . . , αB/2−1, βB/2−1 be some elements in the same chunk, which

belong to the same polynomial. Our goal in the first part is to permute the

elements within the chunk to achieve the order, α0, . . . , αB/2−1, β0, . . . , βB/2−1. The

computation will be done in several steps, at the beginning of each step we assume

the input is as follows,

A0, B0, A1, B1, . . . ,
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Figure 7.5: Applying Permutation σd on a Chunks’ Elements

Where Ai and Bi are blocks of q alphas and betas respectively such that

Ai = αi·q, . . . , α(i+1)·q−1

Bi = βi·q, . . . , β(i+1)·q−1

After applying permutation σ2q the blocks’ order will be A0, A1, B0, B1, A2, A3, . . . .

Applying permutation σ4q the blocks’ order will be A0, . . . , A3, B0, . . . , B3, A4, . . . .

At the beginning each block will be composed of exactly one element, after

repetitively applying permutations σ2, σ4, . . . we will get the output as requested

above.

The implementation of σi can be done using bitwise operations. The following

code is a possible implementation of the permutation in C programming language

on the bits of row i of chunk C.

d=

q−bits︷ ︸︸ ︷
11 . . . 1

3q−bits︷ ︸︸ ︷
00 . . . 0

q−bits︷ ︸︸ ︷
11 . . . 1

3q−bits︷ ︸︸ ︷
00 . . . 0 . . .︸ ︷︷ ︸

B bits
C[i]=(C[i]&d) | (C[i]&(d>>3q)) | ((C[i]&(d>>2q))<<q) | ((C[i]&(d>>q))>>q)

If 2d+1 < B only permutations σ2, . . . , σ2d−1 , and the next sub-phases will not be

executed at all.

Figure 7.6 gives an example for the flow of this phase for a single chunk when

B = 16. The phase is composed of three steps, in which we apply permutations

σ2, σ4 and σ8 consecutively to achieve the goal of this phase - having all αi elements

kept in order in the first half of the chunk and all βi elements ordered in the

second half.

2. On the second sub-phase we assume that 2d+1 ≥ 2B so each row in the input

matrix of the shuffle phase is represented using at least two chunks. After the first

sub-phase each chunk contents B/2 alpha elements followed by B/2 beta elements.
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Figure 7.6: Applying Permutation π8 on a Chunks’ Elements

In this sub-phase we wish to change each to consecutive chunks such that the first

chunk will contain the alpha elements of both chunks and the second chunk will

contain the beta elements from both chunks. The implementation can be done

as follows. For each pair of two chunks A and B we will launch a single warp.

Thread j in that warp will perform for each row i ∈ Rj a swap between the B/2

MSBs of Ai LSBs of Bi. Performing this swap, in parallel on all rows of chunks A

and B will give the requested output.

3. On the third sub-phase we assume that 2d+1 > 2 so each row in the input matrix

spanned over at least 4 chunks. Otherwise, this sub-phase is not performed. At

the end of previous sub-phase it is assured that the input to this sub-phase is a

series of chunks A0, B0, A1, B1, . . . such that Ai contains αiB, . . . , α(i+1)B−1 and

Bi contains elements βiB, . . . , β(i+1)B−1. On this phase we will allocate a new

array that will be the output array of the same length as the input array. The

ith chunk of the jth row of the matrix after sub-phase 2 will be copies the sd(i)

chunk of the jth row at the output array.

7.6 Linear Evaluation Phase

In this phase we have as input many linear functions represented within chunks. Each

chunk C will contain a series of pairs of elements αt,j,0, βt,j,0 that represent the linear

function ht,j(x) = αt,j,0 + βt,j,0x. In this phase we will evaluate each gt,j over the affine

subspace of two elements, s, s+ b.

The requested output is replacing each αi with ht,j(s) and each βi with ht,j(s+ b)

to obtain et,j evaluation of ht,j over the affine subspace s, s+ b. In this phase each warp

will perform two finite field multiplications of chunks. The first will multiply an input
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chunk C by a chunk containing the elements 0, s, 0, s, 0, s, . . . this will multiply each βi

by s, adding the result to αi will give hi(x). The second finite field multiplication of

chunks will multiply the input chunk by 0, b, 0, b, 0, b, . . . . This will multiply each βi by

b. Adding hi(s) that has already been calculated to βi · b will give us hi(s+ b), that will

finish the calculation in this phase.

In figure 7.7 the flow of the linear evaluation phase over a single chunk is presented

where B = 16.

0a 0b 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b 7a 7b

0 s 0 s s s s s s s0 0 0 0 0 0

0 0sa b+ ×

LSB MSB

Shift-Right by 1

7 7sa b+ ×

0 b 0 b b b b b b b0 0 0 0 0 0

Field Chunk Multiplication

Field Chunk Multiplication

0 0sa b+ × 7 7sa b+ ×( )0 0s ba b+ + ( )7 7s ba b+ +

1 0 1 0 0 0 01 1 1 1 1 10 0 0

Field Chunk Multiplication*

0 0

Shift-Left by 1

Figure 7.7: Linear Evaluation Phase Applied Over a Single Chunk



7.7 Merge Phase

The input of this phase are 2t evaluations et+1,0, . . . , et+1,2t−1 of some polynomials over

the same affine subspace S = sD +D in this phase we will take each pair of evaluations

et+1,2j and et+1,2j+1 and treat them as the evaluations of some polynomials gt+1,2j(x)

and gt+1,2j+1(x) respectively as described in Algorithm 3.5 where each et+1,2j and

et+1,2j+1 are the U and V (as in algorithm 3.5) of some FFT invocation, respectively.

The evaluations are kept in memory in an array of chunks. The ith element in each

evaluation et+1,j is gt+1,j (sD +D[i]) where et+1,j is the corresponding evaluation of

gt+1,j(x) over the affine subspace sD +D.

In this phase, as described in Algorithm 3.5, we will take each pair of et+1,2j and

et+1,2j+1 with evaluations u0, . . . , u2d−1 and v0, . . . , v2d−1. These will be used to compute

for the polynomial gt,j the evaluation of it, w0, . . . , w2d+1−1 such that for each 0 ≤ i < 2d,

wi ← ui + (sD +D[i]) · vi
w2d+i ← wi + vi

Assuming we know beforehand the subspace of the FFT we will keep in memory for

each affine subspace sD +D for each merge iteration (as described in section 7.1) of the

algorithm an array of all elements in that subspace, in order. One of the following cases

will happen in each level of recursion,

1. The number of elements in the subspace is bigger than or equals to B (number of

elements that can be stored in a single chunk). In that case, the elements will be

kept in an array of chunks.

2. The number of elements in the subspace is smaller than B. In that case, a single

chunk will be allocated for the storage of elements in the subspace. Let 2d be the

number of elements in that subspace, then the chunk will be filled such that each

group of consequent 2d+1 elements will contain first 2d zero-elements and then 2d

subspace elements. The reason for this storage will be explained next.

The implementation of this phase will be taking all elements in et+1,2j+1 multiplying

them by the elements in the affine subspace sD +D which we already have in memory

in multi-point fashion such that the vi will be multiplied by sD +D[i]. The output will

be added to the corresponding ui in et+1,2j . The result after the addition will be added

to vi in et+1,2j+1 to obtain et,j .

To do this a single warp will be launched for each chunk in which elements of

et+1,2j+1 exist.

In the case in which a subspace has e < B each chunk in our input has both et+1,2j

elements and et+1,2j+1. Therefore, elements we will keep all elements of the subspace in

a single chunk in the following way. The first 2e elements will be e zero field-elements

and e elements will be the elements of the subspace. The next 2e elements will be the
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same and so on. Now, after multiplication of each chunk of evaluations by that chunk

the result will be first right-shifted e times. As for each vi that was multiplied by some

subspace element, the results should be added to ui that resides in this case in the same

chunk e elements before vi. Notice that after the addition each vi not be changed since

all ui elements were multiplied by zero.
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Chapter 8

Performance

In this chapter we will present the performance of various implementations for the FFT,

inverse FFT and finite field multiplication algorithm.

The source code of the finite field multiplication is available online 1. We incorporate

the algorithms in Section 6.3 into the finite field multiplication implementation according

to Algorithm 6.1.

Methodology We use GeForce® GTX TITAN-X GPU, and a Supermicro Server

with 2x6 Intel® Xeon® E5-2620 v2 @ 2.10GHz CPUs with 64GB of RAM. For each

measurement we perform five executions, remove the highest and lowest results, and

compute the average of the remaining three. We observe negligible standard deviation,

less than < 4%. Hyperthreading and CPU power management are disabled to achieve

reproducible CPU performance. Each experiment uses random data for its input. As a

CPU baseline we use NTL version 8.1.2 [V. 03], which is a highly-optimized single-core

CPU library for finite field arithmetics that uses CLMUL CPU intrinsics for polynomial

multiplication.

Speedup over CPU for GF
(
232
)

and GF
(
264
)

Our implementation for GF
(
232
)

and GF
(
264
)

employs optimized register cache implementations of n=32 and n=64 poly-

nomial multiplication respectively. We emphasize that we apply the same optimizations

the NTL does when 2-gapped polynomials are used, and that the NTL implementation

is based on the CLMUL instruction.

Figure 8.1 shows the results. The GPU implementations for GF
(
264
)

and GF
(
232
)

are up to 99 × and 138 × faster than NTL’s CPU multiplication for inputs exceeding

226 elements.

We observe that the speedups are not constant. The reason lies in the variability

in the NTL performance, which drops by about 15% for larger inputs. The GPU

implementation performance keeps rising until it plateaus out for inputs exceeding 225

elements.

1https://github.com/HamilM/GpuBinFieldMult
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The peak throughputs of GPU implementations are 3.15 and 2.09 billion finite

field multiplications per second for GF
(
232
)

and GF
(
264
)

respectively. Note that these

throughputs are slightly lower than the throughput of the respective polynomial multi-

plication, because finite field multiplication involves multiple polynomial multiplications.

Register cache vs. shared memory We compare two implementations for multi-

plication in GF
(
264
)
: with shared memory and with register cache. This experiment

seeks to evaluate the impact of our register cache optimization on the end-to-end appli-

cation performance. We observe that the register cache version is 50% faster than the

shared memory version. As expected, the performance boost is smaller than in the pure

polynomial multiplication case reported in Table 6.1.

210 212 214 216 218 220 222 224 226 228
0

40
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120

Number of multiplications

S
p

ee
d

u
p

GF
(
264
)

GF
(
232
)

Figure 8.1: Speedup of register cache multiplication in GF
(
264
)

and GF
(
232
)

over NTL

Performance for larger fields We evaluate the performance of the finite field

multiplication in fields of higher degrees. Here we incorporate our hybrid implementation

for polynomial multiplication described in Section 6.4, using the n=32 polynomial

multiplication as its building block. We measure the performance for fields from

GF
(
232
)

to GF
(
22048

)
. We use 223 elements per input.

Figure 8.2 shows the speedup of our implementation over NTL. We achieve significant

speedups for smaller fields, but when fields grow larger our speedup diminishes (to

2.17× in GF
(
22048

)
). The reasons are found in the NTL implementation. For fields

smaller than GF
(
264
)
, NTL uses the CLMUL intrisics, which allow only multiplication

of n=64 degree polynomials; the implementation is therefore inefficient for these fields.

Our GPU implementation does not suffer from this limitation. However, for larger

fields NTL uses a different hybrid algorithm (Karatsuba), which is asymptotically faster

than the quadratic algorithm we use. The problem of implementing the Karatsuba

algorithm on GPUs is in the difficulty to balance the load across threads. We leave the

implementation of a GPU Karatsuba for future work.

Performance for other fields Figure 8.3 shows the performance of our GPU im-

plementation for GF
(
2N
)

where N 6= 2n. As expected, we observe the step function,
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Figure 8.2: Speedup over NTL for varying field sizes
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Figure 8.3: Finite field multiplication performance for GF
(
2N
)

where N is not a power
of 2.

where in each step the inputs are processed by the same number of warps. The number

of warps in our implementation employed in GF
(
2N
)

is dN64e.

Considering alternative CPU implementations In all our experiments we use

a single-threaded NTL implementation for CPU as the performance baseline. NTL

natively supports multiplication of a single pair of elements and uses CLMUL instruction.

One could argue, however, that extending NTL to support multiplication of many pairs

in a batch, as we do in GPUs, might open additional optimization opportunities, e.g.,

bit-slicing techniques like those proposed in Section 6.2. Thus, it would become possible

to use the AVX vector instruction set instead of CLMUL, potentially improving NTL

performance.

We now show why CLMUL implementation is superior. In the AVX instruction

set [Fog16] a single 512-bits wide AND and XOR takes 1 cycle each. Therefore, using

our bit-slicing algorithm, we can multiply 512 pairs of polynomials of degree 64 in

2× (642) = 8192 cycles. Note that this estimate is rather optimistic, as we ignore the

time to reorganize the input bits to allow vectorized execution. On the other hand,

each CLMUL instruction multiplies a single pair of polynomials of degree 64 in 3.5

cycles (latency 7 cycle, throughput=2) [Fog16]. Therefore, 512 polynomials can be

multiplied in 3.5× 512 = 1792 cycles alone, much faster then the bit-sliced AVX-based

implementation.
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Figure 8.4: Comparison of GPU and a single threaded CPU implementation for FFT
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Figure 8.5: Comparison of GPU and a single threaded CPU implementation for inverse
FFT

8.1 FFT and Inverse FFT

In this section we will present the performance of our GPU implementation for the FFT

and inverse FFT over multiple affine subspace dimensions.

Figures 8.4 and 8.5 present the runtime and the speedup of the GPU implementation

over the serial CPU implementation for FFT and inverse FFT respectively.

Due to the symmetry of the algorithms, both figure portray the same picture. In
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both algorithms the GPU implementation achieved a speedup of 16. In the TITAN-X

architecture the GPU implementation achieves a maximal subspace size of 229 and is

limited by the global memory size of 12 GBs. For the maximal input size of 229 the

GPU achieves a running time of 37 seconds for both FFT and inverse FFT.
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Chapter 9

Conclusion and Open Questions

9.1 Conclusions

GPU Scales GPGPU programming with cuda gives more power to the programmer

in memory hierarchy management. This manual management of registers and shared

memory can prevent some phenomena on CPU that may cause lack of scalability like

false sharing or excessive cache miss rates. However, with great power comes great

responsibility as one has to take many considerations and restrictions into account when

manually managing his memory hierarchies and this management can be a quite a

burden to the programmer.

Utilizing CPU and GPU Instruction-Set To achieve high performance and

throughputs, applications should use the state of the art SIMD instructions in the

instruction set and not be restricted to old, classical instructions. The key to the

high performance of the CPU implementation of finite field multiplication is the use

of the PCLMUL instruction. Particularly the SSE instruction sets make CPU SIMD

programming simpler and very efficient.

Warp Locallity in GPU The register cache method presented in chapter 5.2 can

be used in a wide variety of applications as discussed in chapter 1 to achieve a modular

and scalable primitive for intra-warp communication. This method can accelerate

computations which are warp-centric, i.e - the computation can be broken into somewhat

larger parts in which each warp in independent. Several uses for this method are given

in chapter 5.2. In chapter 6 we presented the main use of this method in this work -

accelerating finite field multiplication in binary fields. With this method being applied,

additional throughput of 50% is measured.
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9.2 Some open questions

Is Gao and Matteer’s Algorithm Inherently unscalable? In section 3.2 we

presented an additive FFT algorithm for affine subspaces over finite fields, originally

published by Gao and Matteer [S. 10] with a little addition making it compatible for

affine subspaces as well. In section 4.2 we presented an implementation of this algorithm

in CPU architecture and the performance of this implementation as discussed in section

8 point that this implementation does not scale because of high cache miss-rate along

with high NUMA traffic. Is implementing this algorithm on CPU is possible in a

scalable manner? Can one avoid the excessive miss-rates? If not, what properties of the

algorithm or CPU architecture cause it?

Can the GPU Hardware Support a Warp-Level Cache? In chapter 5.2 the

model of register-cache method is presented. This model behaves as a virtual warp-level

cache, in term that each thread reads several values from the shared/global memory,

stores them in registers, and shares them using shuffle with any threads wishes to access

to these values, by that reducing shared/global-memory traffic. This cache is not only

manually configured but is also not an inherent part of a large set of computations, as

shown in chapters 1 and 5.2. We raise a question whether it is possible that the GPU

architecture will support a such warp-level cache as parts of its hardware and whether

this level of cache is manually managed by the user or automatically by the GPU.

Can the register cache application can be automatized? In chapter 5.2 we

present the model of the register-cache method alongside a sime use-case of it. The

programmer in our case should be always aware of the usage of register cache when

reading and writing to memory. Implementing an automatic tool that in compilation-

time can substitute memory-accesses with the corresponding shuffles to achieve register

cache will relieve the programmer of this burden and perhaps will be able to distribute

the data between threads in an optimal fashion that minimizes the number of shuffles

performed for a single memory access.
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mibivn ep` ef dceara .il`aelb e` szeyn oexkifl ztqep dyib `ll dveawd dze`a mit

GPU -a miaeyig zv`dl zcreind "mixbe` oenhn" z`xwpd d`lne zinxetipei dibelecezn

-d zxehwhikx`l minzixebl` ly ax xtqn mibven oke mixbe` qqean oenhna zwqere

.ef dibelecezna yeniy zervn`a ui`dl ozip mze` GPU
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lk ,sqepa .dvixd ipnfa yep` ote`a rbtiy xac ,cewd revia lvtzn odil` mikxcd lk z`

zg` aeyig dcigil zevawzn ,miheg drax`e mixyr sl` ody ,zeveaw miizye miyely

onf lka carn lk xy`k micarn ly zizxneg laben xtqn yi GPU -l ."wela" z`xwpy

yeniy jez ,eay "szeyn oexkif" oke ceair zcigi yi carn lka .miheg ly wela uixn oezp

ohw `ed z`f oexkif .rcin szyl welad eze`n miheg mileki ,zeni`zn oexkpq zecewta

okl ddeab dbxcn miix`pia dagxd zecya miltk yenin lr zeywdl ieyr ea yeniye ziqgi

zligza hlwd `vnp da ,zil`aelb oexkif ziikxxid yi sqepa .ea yeniya hirndl lczyp

oexkifd ziikxxidl dyibd .zipkzd ly dvixd seqa eil` azkp hltde zipkzd ly dvixd

zaizkle hlw z`ixwl hxt oihelgl eprpnp ea yenin bven ef dcearae zihi` `id zil`aelbd

lk xy`k zeipkz ly dxcq ici lr zrvazn ef dxehwhikx`l zepkzd .df oexkifl dyibn hlt

,jk-itl .d`ad zipkzl dxiarn dly hltd z`e miaeyig eilr zrvan ,hlw zlawn zipkz

zipkza hlt zaizk ici lr `l` ,welad eze`n mpi`y miheg oia zxeywz rval ozip `l

eilr sqep ueli` .xg` heg ici lr zawerd zipkeza hlwd z`ixwe edylk heg ici lr zg`

-pd zeaezkd lr ,edylk welan miheg ly il`aelbd oexkifl dyib jldnay `ed xenyl yi

oexkfdn d`ixwdy oeeik z`f ,efl ef zeaexw zeidl xnelk ,"zeaaexn" zeidl oexkifdn ze`xw

,okl .zekenq oexkif zaezk ly milecb xtqn ly ipeivw`f`pxh ote`a zrvazn il`aelbd

.d`ixwd revial zeivw`f`pxh ly ax xtqn eyxcii efn ef zewegx ze`xwpd zeaezkd m`

od il`aelbd oexkifl ea zeyibd lke milevit lehp `ed GPU -a dixetd zexnzd yenin

zpn lr .eyrpy zewicaa xyr-dyiy it ddeabk d`vnp GPU -d ly dwetzd .zeaaexn

iliawn `ed yeninda .iteq dcya xidn ltkl yenin dyrp GPU -a zexnzdd z` ynnl

.xg` mixai` svxa iteq dcya mixai` ly svx ly ltk lr zi`xg` miheg zveaw lke ok mb

iteq dcya mixai` ipy ly ltkd onfa rvan yenindy zelertd xtqn ik dlr wiecn gezipn

dyixc dtqep ,jk-itl .wixt-i`d mepileta qt`n mipeyd mincwnd xtqna xzid oia ielz

5 ilra xnelk ,mil`inephpt eidi didiy yenina mda epynzydy miwixt-i`d minepiletl

ihwxt jxev lkl ik mi`xn `yepa eyrpy mincew mixwgn .xzeid lkl qt`n mipey mincwn

mxhy zexryd zeniiw oke miil`inehpte migeexn miwixt-i` miix`pia minepilet lr reci

ly yenind el` minepilet zervn`a .witqn lecb ix`pia dcy lka mneiwl xy`a ekxted

.CPU -a ltkd yeninl qgia lceb xcqa deab dcewtz ozp iteqd dcya ltkd

mi`vnpy oexkifl mipey miheg ly zeyibd ote`l xy`a dyrpy xzei winrn xwgn jezn

,il`aelbd oexkifa midf zenewnl mixvw onf iyxtda miybip md ik dler dveaw dze`a

epid beviid .iteqd dcya mixai`l oexkifa xg` bevii gzet ,okl .zeihi` od eil` zeyibdy

dn ,mdly mixbe`a xnyidl miheg zveaw dze` ici lr miltkend mixai`l xyt`ne xfean

.il`aelbd oexkifl zeyib ly ax xtqn jeqgle oexkifl xzei miphw dyib ipnf zepwdl xen`y

dveawd dze`a xg` heg mr dveawa mieqn heg ly xbe`a `vnpy okez szyl zpn lr

dvixd onfn yilyk cixedl epglvd ef jxca .carnd ly (shuffle) aeaxrd zcewta epynzyd

.iteqd dcya mixai` ly ltkl yexcd

-xed did GPU -a miiteq zecya ltkd yenin z` ui`dl epglvd ezervn`a dgpnd oexwird

dycg oenhn znx zxivie (il`aelbe szeyn oexkif) zeihi` oexkif zenxl dxearzd jq zc

-qep miheg oia mdly seziye miheg ly mixbe`a mikxr zxiny ici lr il`ehxie ote`a
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ef dcear zxbqna ,sqepa .ok mb iliawn epid yenind ,ozipd lkk liri didi yenindy zpn

-na cenrl zpn lr .GPU -e CPU ,mzixebl`d ynen oda zepey zexehwhikx` izy epgap

miiaihic` dixet zexnzd inzixebl` yenina xzeia lecbd xbz`d ozpidae ,xwgnd zxh

.iteq dcya ltkl yexcd dvixd onf jq z` dligz mvnvl yi ,miiteq zecy lrn

-ic` dixet zexnzd aeyigl minzixebl`a iteq dcya ltkl yexcd dvixd onf jq mevnv

ici lr miyrpy miltkd xtqn mevnv `id ,dpey`xd .mikxc izya df xwgna dyrp zeiaih

.zg` ltk zlert revial yexcd onfd jq mevnv `id ipyde mzixebl`d

mzixebl`a ynzydl hlged rval jixv mzixebl`dy miltkd xtqn z` mvnvl zpn lr

lrn `le miagxn-izz lrn wxe j` aeyigd z` rval xyt`n j` 2010 zpya mqxety miiw

lr mzixebl`l eyrpy miiepiy xtqn mibven ef dceara .iteqd dcya ipit` agxn-zz lk

.mdylk mipit` miagxn-izz lrn aeyigd z` rval el xyt`l zpn

`ed xai` lk ,xnelk ,ihxcphqd qiqaa mibvein miizy oiivnn iteqd dcya mixai`d

.micaer ea iteqd dcyd ly dagxdd zbxcn dphw ezbxce zg` e` qt` mincwn mr mepilet

m` xidn ltk rval zpn lr .edylk wixt-i` mepilet elecen zervazn zelertd lk df dcya

zpn lr .elecend zelert ly oke minepiletd ly ltkd zelert ly liri reviaa jxev did ,ok

miwixt-i` minepileta ynzydl ephlgd ,wixt i` mepileta elecend zlert z` zeliria rval

-hw qt`n mipey mdincwny mepiletd ipzyn zwfg m` "geexn" `xwii mepilet ."migeexn"

mepiletd dpzyn zwfg ly qt`n dpeyd mcwnl ,oaenk hxt ,mepiletd zbxcn zivgnn dp

ef dceara epi`xd el`ky minepileta miynzyn ea dxwna .mepiletd ly ezbxc z` raewd

carnd zcewt zervn`a zeliril ektdy ,minepilet ltk zelert izya ynzydl ozip cvik

dcya ltk rval dyrnl jkae "geexn" mepileta elcen zlert rval zpn lr ,lirl dxkfedy

z` ze`xnd ze`vez zebven ,ok enk .zeliri minepilet ltk zelert yely zervn`a iteq

iliawnd yenind .miizy oiivnn miiteq zecya migeexn miwixt-i` minepilet ly mneiw

jkle zeilia`l`wq ze`vez ozp `l CPU -d zxehwhikx`a ziaihic`d dixetd zxnzd ly

yi ozipy yeninly `id dzlry dxryd .ef dcear ly dzxbqnl uegn opidy zeaiq xtqn

-lw mda mzixebl`a mialy mpyiy oeeik milecb mihlw lr ilia`l`wq `l zeidl dihp

dyib .oexkifa miwgexn zenewna mi`vnpy mikxr xtqn ly divwpet md miniieqn mih

zepeyd oenhnd oexkif zenxa zeieybpzdl znxebe carnl xwi onf dler oexkifa el` zenewnl

.carna

iliawn ilia`l`wq yenin ef dceara bven CPU -d zxehwhikx`n dlry iyewd zeawra

,xwgnd ze`vez z` bivpy iptl .ziaihic`d dixetd zxnzd ly GPU -d zxehwhikx`l

ly ce`n lecb xtqn yi ef dxehwhikx`a .GPU -d zxehwhikx` ly iphyt lcen bivp

-e`d xtqn .mixbe` jeza xnypy ihxt oexkif yi heg lkl ,"miheg" ze`xwpy aeyig zecigi

miwlegn mihegd .laben ely ihxtd oexkifa xenyl leki hegy oexkifd jq okle laben mixb

dyrnle cg` sebk zlret dveawd .miheg miipye miyely dlikn dveaw lkyk "zeveaw"l

miheg da zipkz zaizk ,dcewtd dze` z` mirvan dveawa mihegd lk oezp onf lka

dcewtd reviaa dipzd yi ea dxwna lynl ,dcewt dze` z` mirvan `l dveawd dze`n

ervai mihegd lk ea avn xexbz ,dveawd dze`n miheg oia zipkza reviad levitl mxeby
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xivwz

wlg zeidl jtd f`ne mipy miyingk iptl lgd zexidn dixet zexnzd yenina weqird

-xwqic dixet zexnzdy xnel ozip ,iqiqa ote`a .iqcpdde ircnd xwgnd on cxtp izla

ly zewfga mepiletd incwn zltkn ly iteqe ilnxet mekqk mepilet ly bevii dxinzn zih

weica lecbd zecewp xtqn lr epnn lawznd jxrd jeza mepilet ly beviia mepiletd dpzyn

zecy lrn minepilet ly jexriyae zeihxwqic dixet zexnzda jxevd .mepiletd zbxcn 1-a

egezity sqep yeniy .oeneleq-cix ceciw znbec mipey miixabl` miyeniya `vnp miiteq

.zexvw ziaeyig zenly zegkedl zkxrn ly gezit `ed ef xwgn zcearl liaed xy` `ed

."`ceen" z`xwpd zxg` zeyiil "giken" z`xwpd zg` zeyii oia miniiwzn el` milewehext

gikend .zipkzd xear dvixd onfl oeilr mqge zipkzl hlw ,zipkz gikenl gley `ceend

z` gleye micrvd mqgl dzrbdl cr e` dzxivrl cr jynl laiwy zipkzd z` uixn exeza

`ed ik dxvw dgked zervn`ae izexazqd ote`a giken okn xg`l .`ceend l` zipkzd hlt

`ceen `ceend .aeyigdn lawzdy hltd `ed `ceenl glyy hltde aeyigd z` rvia ok`

`ceend dgkedd zxivi jldna .dze` zegcl e` lawl m`d hilgne dgkedd z` liri ote`a

-na `ceenl ely edylk ceciw gleye zipkzd zvix jxe`l oexkifd okez xg` awrn xviin

.miizy oiivnn miiteq zecy lrn dixet zexnzd zervn`a ayegn ceciwd .dgkedd zxbq

md gikend ly eiaeyiga ifkxnd weawad x`eev ik d`xp gezitd zxbqna eyrpy zewican

zeliria rval xyt`y aeyig ,miipit`d miagxnd izz jxrn mepiletd jexriy aeyig alya

-en oziy`xa eid dixet zexnzd .miiteq zecy lrn zeihxwqic dixet zexnzd zervn`a

xcqn dcigi iyxey ly ziltk dxeag-zz ly dneiw lr eknzqd od .(zeiltk) zeiaihwiltih

lkn dcigi iyxey oi` ,miiteq zecyl hxtae minieqn zecyl ,z`f mr .edylk dcya edylk

zeiaihic` dixet zexnzd .zeiaihic` dixet zexnzda weqird lgd jk jxevl ,`edy xcq

cgeina zeni`zn zeiaihic` dixet zexnzd .zeixeaig zexeag-zz ly oneiw lr zeqqazn

opyi ,2 oiivnn miiteq zecya hxtae iaihic` dpan ilra mpid el` zecy oky ,miiteq zecyl

zeiaihic` dixet zexnzd aeyig ly xwgd .2 ly dwfg `edy lceb lkn zeixeaig zexeag

j` `yepa minzixebl` xtqn enqxet zrd dze`a .mipenyd zepya lgd miiteq zecya

-ird zeaiqd zg` .zrcd z` migipn mpi`y mirevia eaipd minzixebl` mze` ly miyenin

miltk ly ihehtniq` ote`a icn deab xtqn miyxec el` minzixebl`y dziid jkl zeixw

mixg` minzixebl` .dvixd onf aex z` mikxev el` miltk ik dlr dwican .iteq dcya

miyxec j` ,iteqd dcya miltk ly zihehtniq` xzei ohw xtqn mipzep mpn` ervedy

yenin dziid df xwgn ly ziy`xd ezxhn .ce`n zeniieqn zepekz lra didi efd dcydy

lr .2 oiivnn miiteq zecya miipit` miagxn izz lrn zeiaihic` dixet zexnzd ly liri
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dhlewta ,oiihyxalif wxn xeqtexte oeyy-oa il` xeqtext ly mziigpda dyrp xwgnd

.aygnd ircnl

-lzyda daicpd zitqkd dkinzd lr oeipkhle dnly-oa dypne dclid y"r oxwl dcen ip`

.izen
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zexnzd aeyigl miiliawn minzixebl`
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xwgn lr xeaig

x`ezd zlawl zeyixcd ly iwlg ielin myl

aygnd ircn

qiling ozn

l`xyil ibelepkh oekn --- oeipkhd hpql ybed
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