Parallel Additive Fast Fourier
Transform Algorithms

Matan Hamilis

Technion - Computer Science Department - M.Sc. Thesis MSC-2016-15 - 2016

Parallel Additive Fast Fourier
Transform Algorithms

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

Matan Hamilis

Submitted to the Senate
of the Technion — Israel Institute of Technology
Tamuz 5776 Haifa July 2016

Technion - Computer Science Department - M.Sc. Thesis MSC-2016-15 - 2016

The Research Thesis Was Done Under The Supervision of Prof. Eli Ben-Sasson and
Prof. Mark Silberstein, in the Faculty of Computer Science.

Some results in this thesis have been published as articles by the author and research
collaborators in conferences and journals during the course of the author’s doctoral

research period, the most up-to-date versions of which being;:

ICS 16’ E. Ben-Sasson, M. Hamilis, M. Silberstein, and E. Tromer, Fast
Multiplication in Binary Fields on GPUs via Register Cache, Proceedings
of the 30" International Conference on Supercomputing, ACM 2016.

E. Ben-Sasson and I. Ben-Tov and A. Chiesa and A. Gabizon and D. Genkin
and M. Hamilis and E. Pergament and M. Riabzev and M. Silberstein
and E. Tromer and M. Virza, Computational integrity with a public
random string from quasi-linear PCPs, cryptology ePrint Archive, Report
2016/646.

Acknowledgements

First, I would like to thank my advisors, Eli and Mark, for their infinite patience and
for wholeheartedly answering every question I had in any time. For cultivating my
curiosity by posing new challenges, for giving me the tools to face these challenges and
for pointing out possible research directions along the way.

I would like to thank my family as well, for constantly pushing me to saturate my
uncontainable thirst for knowledge, for their inexpressible support and wisdom and for
helping me to make one step at a time towards my dreams.

I am thankful for having my friends inside and outside the Technion for being
there beside me along the way, for sharing their paths of lives and experiences with
mine and for helping me maintaining a balanced, exciting and gladdening life. The
importance of your interest in my work is immeasurable and without it, achieving the
same results would have been impossible. For those who were listening to me without
even understanding what I was talking about just so I would feel comfortable about my
achievements and for those who did understand me for their constructive commentary
and critique.

Last but not least I would like to thank my students along the years, which undoubt-

edly I have learned from more than they did from me.

The Generous Financial Help Of The Hilda and Manasche Ben-Shlomo Fellowship And
The Technion Is Gratefully Acknowledged.

Technion - Computer Science Department - M.Sc. Thesis MSC-2016-15 - 2016

Contents

List of Figures
List of Algorithms
Abstract

1 Introduction

2 Preliminaries
2.1 Finite Extension Fields’ Elements and Bases
2.1.1 Definitions
2.2 Polynomial Bases

2.3 Normal Bases e

3 Theoretical Discussion

3.1 Fast Multiplication in GF(2™)
3.1.1 Generalization for Optimized Multiplication in k-Gapped Finite

Fields o

3.1.2 Finding a k-Gapped polynomial

3.2 Generalizing Gao & Mateer’s Additive FFT for affine subspaces
3.2.1 Taylor Expansion L L

3.2.2 Additive FFT in Binary Fields Over Affine Subspaces

4 CPU
4.1 Finite Field Arithmetics
4.1.1 Element Representation on CPU
4.1.2 Finite Field Library APT.
4.1.3 Implementation of multiplication in GF(264)
4.2 Parallel FFT and inverse FFT implementation

5 GPU - Introduction of Register Cache
5.1 Imtroduction of GPUs
5.2 Intra-warp register cacheo
5.2.1 Example: 1D k-stencil oo

10
11

13
13

15
17
18
18
19

23
23
23
23
24
25

5.22 Analysis
5.2.3 Limitations e

6 GPU - Finite Field Multiplication
6.1 Sequential finite field multiplication.
6.1.1 The CPU CLMUL instruction
6.1.2 Sequential polynomial multiplication
6.2 Parallel polynomial multiplication
6.2.1 Bitslicing
6.2.2 Parallel polynomial multiplication using chunks
6.3 Polynomial multiplication using register cache
6.4 Extending to polynomials of larger degrees
6.4.1 Performance comparison of the different designs
6.4.2 Application to larger fields
6.4.3 Using shared memory only for the output

7 Implementation of the FFT algorithm on GPU
7.1 Outline of the Implementation
7.2 Set Upfor GPU o
7.3 Shift Phase
7.4 Taylor Expansion Phase
7.5 Shuffle Phase
7.6 Linear Evaluation Phase
7.7 Merge Phase

8 Performance
8.1 FFT and Inverse FFT

9 Conclusion and Open Questions
9.1 Conclusions L L

9.2 Some open questionso

Hebrew Abstract

37
37
37
38
39
39
40
41
43
44
45
46

49
49
92
52
93
95
o8
60

63
66

69
69
70

List of Figures

5.1
5.2

5.3

6.1

6.2

7.1
7.2
7.3
7.4
7.5
7.6
7.7

8.1

8.2
8.3

8.4
8.5

Input distribution in 1-stencil computation 32
Speedup obtained from coarsening in the computation of 1 — Stencil and
7 — Stencil for register cache and shared memory implementation 35
Speedup of the shuffle-based k-Stencil implementation over the shared

memory-based implementation as a functionof & 35

Illustration of the access pattern of the multiplication algorithm for
GF(24) with W =4. Each frame encloses the indexes of rows in A and B

accessed for computing the respective rows ¢; specified on the top. Tid

denotes the thread index in the warp. 39
Polynomial addition in 4-bit chunks. Computing the output chunk

requires 3 bit-wise XORs, each performing 4 concurrent @ operations. . 40
Storage of Coefficients of Input FFT Polynomial in Chunks 49
Outline of the FFT Algorithm 51
Outline of a Single Split Iteration 51
Outline of the Taylor Expansion Algorithm 54
Applying Permutation o4 on a Chunks’ Elements 57
Applying Permutation 7g on a Chunks’ Elements 58
Linear Evaluation Phase Applied Over a Single Chunk 59

Speedup of register cache multiplication in GF (264) and GF(232) over
NTL . . e 64
Speedup over NTL for varying field sizes 65
Finite field multiplication performance for GF(QN) where N is not a
power of 2. . . L. L 65
Comparison of GPU and a single threaded CPU implementation for FFT 66
Comparison of GPU and a single threaded CPU implementation for
inverse FF'T'« . . oo 66

Technion - Computer Science Department - M.Sc. Thesis MSC-2016-15 - 2016

List of Algorithms

3.1 2-Gapped Multiplication in GF(2")
3.2 k-Gapped Multiplication in GF(p™)
3.3 Nalve polynomial multiplication
3.4 Taylor Expansion at 22 —x
3.5 Additive FFT of length n=2"
4.1 Multiplication in GF(2")

4.2 2-Gapped Multiplication in GF (264) using CLMUL

6.1 Multiplication in GF(2")

6.2 Naive polynomial multiplication

Technion - Computer Science Department - M.Sc. Thesis MSC-2016-15 - 2016

Abstract

Fast Fourier Transforms(FFTs), particularly over finite fields, have a main role in a large
set of applications in the fields of signal and image processing, coding and cryptography.
The computation of additive FFTs over finite fields is considered as a simpler and more
scalable method than multiplicative FFTs due to the additive and recursive structure
of finite fields. In this work we present an implementation of an algorithm to compute
additive FFTs over finite fields of characteristic two — “binary fields” — to evaluate and
interpolate polynomials of high degree over large affine subspaces. While previous works
were applied only to linear subspaces, we apply a small modification to an existing
algorithm to compute additive FFTs over affine subspaces as well. We present a parallel
implementation of this algorithm for the GPU architecture and discuss its performance.

The FFT algorithm relies on an implementation of finite field arithmetics. Binary
fields are used in a variety of applications in cryptography and data storage. Mul-
tiplication of two finite field elements is a fundamental operation and a well-known
computational bottleneck in many of these applications, as they often require multiplica-
tion of a large number of elements. In this work we focus on accelerating multiplication
in “large” binary fields of sizes greater than 232. We devise a new parallel algorithm opti-
mized for execution on GPUs. This algorithm makes it possible to multiply large number
of finite field elements, and achieves high performance via bit-slicing and fine-grained
parallelization.

The key to the efficient implementation of the algorithm is a novel performance
optimization methodology we call the register cache. This methodology speeds up an
algorithm that caches its input in shared memory by transforming the code to use
per-thread registers instead. We show how to replace shared memory accesses with
the shuffle() intra-warp communication instruction, thereby significantly reducing or
even eliminating shared memory accesses. We thoroughly analyze the register cache
approach and characterize its benefits and limitations.

We apply the register cache methodology to the implementation of the binary finite
field multiplication algorithm on GPUs. We achieve up to 138x speedup for fields of
size 232 over the popular, highly optimized Number Theory Library (NTL) [V. 03],
which uses the specialized CLMUL CPU instruction, and over 30x for larger fields of size
below 22%6. Our register cache implementation enables up to 50% higher performance

compared to the traditional shared-memory based design.

Technion - Computer Science Department - M.Sc. Thesis MSC-2016-15 - 2016

Chapter 1

Introduction

Motivation

Interactive proofs (IP) were introduced to the world by Babai and Moran [L. 88] and
by Goldwasser et al. [S. 89]. In an interactive proof, a protocol takes place between two
main entities, a computationally-unbounded Prover and a computationally-bounded
Verifier. Along the protocol the prover tries to prove a certain claim to the verifier,
while the verifier has to verify the prover’s proof using a probabilistic procedure. He
can also ask the prover some questions regarding his proof, get the prover’s answers
and so on. After getting all the information he needs, the verifier can either accept or
reject the proof.

A special kind of IP protocols are called PCP-protocols [L. 90,L. 91,S. 98, AS98|
in which the verifier does not read the whole proof given to him by the prover, but
only a small and negligible part of it and decides whether to accept or reject the proof
according to the part he has read.

A major practical implication of the theorem is the ability to succinctly prove the
computational integrity of a program running in time 7'(n) using a PCP protocol with
proof of length poly (T'(n)) is presented in [L. 90], [L. 91], [Kil92] and [Mic94].

The application motivating this work is to efficiently implement a family of probabilis-
tically checkable proofs (PCP) of quasi-linear length, based on the work of Ben-Sasson
and Sudan [E. 08]. This application is envisioned to enable verifiable execution, whereby
a client that offloads a computation to untrusted computing resources, e.g., to a cloud
system, receives a proof which attests that the results have indeed been produced by the
execution of the offloaded computation. This property is also known as computational
integrity and can be proved using PCPs in which the prover (e.g. the cloud system)
proves the computational integrity of a given computation to a verifier (e.g. a client).

Since the prover is computationally unbounded, his role in the PCP protocol can be,
theoretically, expensive in terms of computation. And in practice the prover’s running
time (and space consumption) turns out to be the main bottleneck preventing the system

from running in feasible time. The prover executes a program and wishes to prove the

computational integrity of its execution to the verifier. To do that it has to encode the
execution trace using error correcting codes that possess some interesting properties.
It is known that error correcting codes that are based on low-degree polynomials have
these properties. Particularly, Ben-Sasson and Sudan in their PCP [E. 08] have used
Reed-Solomon codes [I. 60] that are based on univariate polynomials. With other
additional restrictions it was required that the Reed-Solomon codes will be evaluated
over affine-spaces in finite fields of characteristic-2 or characteristic-q where ¢ — 1 has
small prime factors. The execution encoding algorithm is based on the evaluation and
interpolation of polynomials over affine subspaces. These can be done efficiently using
additive FFTs and inverse FFTs (IFFTs) and the implementation of them in finite

fields of characteristic two is the scope of this work.

Fast Fourier Transforms

Fast Fourier Transforms(FFTs), particularly over finite fields, have a main role in
a large set of applications in the fields of signal and image processing, coding and
cryptography [D. 82,R. 02,F. 95, M. , Wel67, LRRY78, J. 98b].

The discrete Fast-Fourier-Transform (DFFT) algorithm for finite fields takes as
input a polynomial P(x) over a finite field GF (pk) and an a set of finite field elements
and calculates P(«) for all « in that set. The inverse discrete fast Fourier transform
(IDFFT) algorithm takes as input a function f : S — GF (p*) where S is a set of
elements from GF (pk) of size n and calculates the interpolation polynomial P(x) over
GF (p*) of degree n — 1 such that for each a € S : P(a) = f(a).

In 1965 the study of the implementation of DFFT algorithms has began by James
Cooley and John Tukey who published in their historical paper [J. 65] a full description
of an implementation for a DFFT algorithm known to Gauss [Gau66]. This algorithm
was a multiplicative-FFT, as evaluating a polynomial over a set that is a multiplicative
group and by that utilizing some of the multiplicative properties of that group. In finite
fields of low characteristic (e.g. GF(2") there are also additive subgroups over which
DFFT algorithm can work. These algorithms, known as additive-DFFTs, evaluate
a polynomial over a linear subspace. The computation of additive DFFTs in finite
fields over affine subspaces is considered as a simpler and more scalable method than
multiplicative DFFTs due to the additive and recursive structure of subspaces in finite
fields. In this work we focus on the implementation of additive DFFTs and additive
IDFFTs to which we will simply refer as FFTs and IFFTs, as non-discrete FFTs are
out of the scope of this work. The first additive FFT / IFFT algorithm for a subspace
of size n was the algorithm of Von-Zur-Gather and Gerhard that was published in [J.
03]. This algorithm performs O(n - log? n) finite field multiplications and additions. In
practice, finite field multiplication, is much slower and consumes and might consume a
large portion of the running time. Therefore, we wish to find an FFT algorithm that

achieves two goals,

1. Minimizes the number of finite-field multiplications
2. Minimize the time that each multiplication takes.

In this work we present an adaptation of Gao and Matteer’s additive FFT and IFFT
algorithm to affine subspaces over finite fields of characteristic two [S. 10] with a smaller
number of finite field multiplications of O(n -logn), compare to Von-Zur-Gather and
Gerhard’s algorithm.

We present an implementation of this algorithm to the GPU architectures and
evaluate its performance. We implemented a CPU version of the algorithm as well.
However, the full details of the implementation of the CPU algorithm is out of the scope
of this work and we focus on the GPU implementation.

For completeness, we clarify that the CPU implementation of FFT achieves good
running times and can evaluate polynomials of degree 230 over 230 elements in less than
20 minutes in our benchmark using a single thread. However, it scales badly on a high
number of CPUs. The reason of this lack of scalability on CPU is left out of the scope
of this work.

The GPU implementation gives more than 16x throughput compared to the serial
CPU implementation. These implementations’ performance heavily relies on the exis-
tence of efficient finite field multiplication an the implementation of such on the GPU

architecture is the main focus of this work.

Finite Fields

Except for additive FFTs, binary fields have numerous applications in cryptography
and data storage. For instance, the Advanced Encryption Standard (AES) [J. 98a]
uses GF (28), as does the error correction scheme used on Compact Discs (CDs) and
Digital Versatile Discs (DVDs). Large fields are the basis for distributed storage systems
like those used by Google and Amazon, which employ fields of size 232,264 and 228 to
ensure secure and reliable storage of data on multiple disks [J. 12]. They are also the
basis for the application motivating this work: an efficient implementation of a family
of probabilistically checkable proofs (PCP) of quasi-linear length [E. 08]. PCPs require
very large binary fields: most of our work focuses on GF (232) and GF (264) but we also
support fields of up to GF(22048). Because all the applications mentioned above need
to perform multiplication of a large number of finite field elements, their performance is
dominated by the cost of finite field multiplication, motivating the never-ending quest
for more efficient implementations of this fundamental arithmetic operation.

In this work we focus on accelerating finite field multiplication for large binary
extension fields of size larger than GF (232) on GPUs, where field elements are represented
using a standard basis (cf. Chapter 2 for definitions). The main computational bottleneck
in this case is the multiplication of polynomials over GF(2), that is, polynomials with

{0, 1}-coefficients. The challenge posed by polynomial multiplication operations over

GF(2) has led Intel and AMD to add an instruction set extension CLMUL to support it
in hardware.

We devise a novel parallel algorithm for multiplication in large binary extension fields
on GPUs, which significantly outperforms the dedicated CPU hardware implementation.
The algorithm is based on two main ideas: First, we apply bit-slicing, enabling a single
thread to perform 32 multiplications in parallel. As a result, all the arithmetic operations
involved in multiplication are performed on 32 bits together instead of a single bit at a
time for single multiplication, therefore matching the width of hardware registers and
enabling full ALU utilization. Second, the computation of a single multiplication is
further parallelized in a fine-grained manner to eliminate execution divergence among
the participating threads. This critical step allows these computations to be mapped to
the threads of a single GPU warp, whose threads are executed in lock-step.

We then focus on an implementation of the algorithm on modern NVIDIA GPUs.
The key to implementation efficiency is a novel optimization technique that we call the
register cache. The register cache enables us to use per-thread registers in conjunction
with the shuffle() intrinsics, that enables intra-warp sharing of register values among
threads, to construct a register-based cache for threads in a single warp. This cache
serves the same purpose as the on-die shared memory, but is much faster thanks to higher
bandwidth and reduced synchronization overhead. We propose a general methodology
for transforming a traditional algorithm that stores its inputs in shared memory into a
potentially more efficient one that uses private per-thread registers to cache the input
for the warp’s threads. We thoroughly study the benefits and limitations of the register
cache approach on the example of a well-known k-Stencil kernel.

Finally, we apply the register cache methodology to optimize the implementation
of the finite field multiplication algorithm for GF(QN), where N=32,...,2048. The
primary challenge is to scale the efficient single-warp implementation to larger fields
while retaining the performance benefits of the register cache methodology. We analyze
several design options, and apply an algorithm that uses a low-degree multiplication as
a building block for multiplication in larger fields.

We evaluate our implementation across a variety of field and input sizes using
NVIDIA Titan-X GPU with 12GB of memory, and compare it to a highly optimized
CPU version of a popular Number Theory Library (NTL) [V. 03] running on a single
core of Intel® Xeon® CPU E5-2620 v2 @ 2.10GHz that uses the Intel’s CLMUL CPU
instruction set extension. Our optimized implementation that uses register cache is up to
138x faster than NTL for GF (232) when multiplying more than 2% finite field elements.
The register cache approach enables us to speed up the original shared memory version
by about 50% over all field sizes.

Our contributions in this thesis are as follows:

1. A novel algorithm for polynomial multiplication over GF(2) on GPUs,

2. A general optimization methodology for using GPU registers as an intra-warp

user-managed cache, along with an in depth analysis of this approach and its

application to polynomial multiplication.

3. Efficient GPU finite field multiplication that is up to two orders of magnitude
faster in fields (GF(23?)) than the CPU implementation that uses the specialized
hardware instruction.

4. Efficient parallel implementation on CPU and cuda-GPU architectures of the
additive FFT and inverse FFT algorithms.

This work is organized as follows. In chapter 2 we give some introductory background
information on the theory of finite fields. In chapter 3 we present the problem of finite
field multiplication in binary fields and discuss some previous results in that field. We
also present the FFT algorithm which we implement in this work. In chapter 4 we
briefly present the outlines of our CPU implementation of the FFT algorithm. Chapter
5 introduces the reader to the architecture and computational model of the GPU. In
chapter 5.2 we introduce the Register Cache methodology to accelerate computation
on GPU via caching values in registers. A small use-case example is given in which
the benefits of this methodology are present. In chapter 6 we apply the register cache
methodology on the multiplication of elements in binary fields. Chapter 7 discusses
the implementation of the FFT algorithm in cuda-GPUs. Chapter 8 presents the
performance evaluation of our finite field multiplication and FFT algorithms. Main

conclusions and open questions for further research are given at chapter 9.

Related work

2-gapped polynomials The CPU implementation of NTL [V. 03] for the multi-
plication in binary fields uses the CLMUL [G. 14] instruction and employs 2-gapped
polynomials to replace reduction with multiplications. We apply a similar algorithm in

our work.

SIMD and bit-slicing The CPU SIMD instructions have been used to perform bit-
slicing to parallelize GF(2") multiplication [J. 13]. Their implementation, however, is
limited to small fields (up to GF(2%?)). The GPU architecture suits SIMD computation
and can provide the same functionality as the CPU SIMD instruction set [S. 11]. The
proposed implementation is, however, also limited to small fields (e.g GF(216)). Our

implementation applies to larger fields.

Finite field multiplication on GPUs The previous works [J. 13,S. 11] are limited

232, Particularly, Plank [J. 13] shows a CPU implementation

to fields of size smaller than
that deals with computing a product of multiple elements by a single scalar, using
scalar-dependent pre-computed lookup tables. Our work focuses on multiplying many
pairs of arbitrary elements, therefore the lookup table approach is inapplicable.
Cohen et al. [A. 10] describes an implementation of finite field multiplication in

specific binary fields. The performance reported in their paper is 3-orders of magnitude

slower than the performance reported in our work, and their implementation would
benefit from bit slicing, register cache and reduced synchronization techniques presented
here.

An implementation of finite field multiplication on GPUs over GF(q) for some
specific large NIST primes ¢ is discussed in [K. 12]. Our implementation, however, is
optimized for binary fields in a scalable fashion to achieve a generic implementation for

a large variety of field sizes.

Register-based optimizations The benefits of reusing data in registers on GPUs
to boost performance are well known. Volkov and Demmel [V. | present GPU imple-
mentations of LU decomposition and SGEMM.

Enfedaque et al. [P. 15] show how to implement the DWT (discrete wavelet transform)
of an image of varying sizes where each warp calculates a different part of the output.
They also show that shuffle-based communication achieves better results when the data
each warp fetches from global memory is reused more times, as also confirmed by our
results (cf. Section 5.2).

Davidson and Owens [A. 11] suggest a method called register packing to reduce
shared memory traffic in GPU when dealing with a downsweep patterned computation,
by performing some parts of the computation in registers.

Catanzaro et al. [B. 14] show a shuffle-based implementation for SIMD architectures,
including the GPU. They discuss the benefits of the instruction for reducing shared-
memory bandwidth and show the relation to the Array of Structs — Struct of Arrays
transforms.

nVIDIA’s Kepler Tuning Guide [nVil5] stresses the benefits of registers over shared
memory in terms of latency and capacity. The shuffle instruction is suggested as an
alternative for the use of shared memory in some cases.

We leverage the lessons learned in the previous work, and take one additional step
by suggesting a register cache design methodology for reducing shared memory accesses
to the input data. We demonstrate the application of this methodology on a challenging
case of finite field multiplication in binary fields, and show that it achieves significant

performance benefits.

Chapter 2

Preliminaries

This chapter briefly reminds the basic elements of polynomial rings and Galois fields
that are necessary to our implementation of additive FFTs. For a thorough introduction
to Galois fields see, e.g., [R. 97a].

The structure of this chapter is a follows; First a general definition to finite fields is
given, then we discuss two of the most common representations for finite field elements,
the Polynomial Bases and Normal Bases.

In the following chapters all references to finite field elements assume these are
represented using a polynomial basis. The definition of a normal basis, being yet another
popular representation for finite fields elements, is given here for completeness. We do
not discuss the implementation of finite field multiplication represented using normal

bases in this work.

2.1 Finite Extension Fields’ Elements and Bases!

2.1.1 Definitions

A finite field or Galois field is a field with a finite number of elements. It is known that
the number of elements in a finite field can only be a power of a prime number. Let p
be a prime and ¢ be a power of p, we denote by GF(¢") or Fyn the Galois-Field with
q" elements, which can be viewed as an extension field over Fy of order n. Therefore
Fyn can interpreted as a vector space of dimension n over Fy. Let ag, aq,...,0,-1 be n
linearly independent elements in Fi» over F,. Any element e € Fy» can be represented
as e = Z?:_ol a; - o; where a; € F,. We use the notation e = (ap, a1, ...,ap—1) to state
the e = Z?;ol a; - oy

Let a = (ag,a1,...,an—-1), b= (bo, b1,...,bp—1) be two elements in Fn. The addition
of a and b is defined as a + b = (ag + by, a1 + b1,...,an—1 + by—1) which is a simple
component-wise addition of the entries of a and b over F,. However, multiplication

tends to be not only more complicated but also more time consuming. We now give

!Definitions are based on [Gao93]

a general definition for the multiplication operation over finite extension fields using

multiplication tables.

Denote by 7°, T, ..., T~ be n matrices of size n x n over Fy s.t.

n—1
oL = Z T-k-ak
J 1]
k=0

So, T£ is the coefficient of ay, in the product of a; with «;. Given three elements
a,b,c € Fyn such that ¢ = a-b and ¢ = (co,c1,...,cp—1) the component ¢ in the

multiplication @ - b is defined as ¢ = a - T% - b.

2.2 Polynomial Bases

The ring of polynomials Given a prime p GF (p) is the field with p elements
(0,1,...,p— 1), with addition (#) and multiplication (®) performed modulo p.

GF (2) is a field with two elements (0, 1), with addition (¢) and multiplication
(®) performed modulo 2. A polynomial over GF(2) is an expression of the form
A(z) := Z?:o a;z’, where a; € GF (2) and x is a formal variable; henceforth we simply
call A(z) a polynomial because all finite field elements in this work are represented as
polynomials over GF (2). The degree of A, denoted deg(A), is the largest index i such
that a; # 0. Addition and multiplication of polynomials (also called ring addition and
multiplication) are defined in the natural way, i.e., for B(z) = YI*, bz’ with m > d
we have A(x) @ B(z) = > 1" (a; ® b))z’ and A(z) ® B(x) = Zjigl @ a; ©bj .
The set of polynomials, augmented with the operations of addition and multiplication
defined above, forms the ring of polynomials over GF(2), denoted GF (2) [z]. Later,
we reduce the problem of efficient multiplication in the field GF (2") to the problem of
multiplying polynomials in the ring GF (2) [z].

The standard representation of a binary field The most common way to repre-
sent GF (2"), also used here, is via a standard basis, as described next. A polynomial
r(z) € GF (2) [z] of degree n is called irreducible if there is no pair of polynomials
g(x), f(z) € GF (2) [z] such that r(z) = g(z) ® f(x) and deg(g),deg(f) < n. Many
irreducible polynomials exist for every degree n. (Later, a special class of irreducible
polynomials will be used to speed up multiplication.) Having fixed an irreducible r(z),
for every pair A, B of polynomials of degree < n, there exists a unique polynomial
C of degree < n such that r(x) divides A(z) ® B(z) @& C(zx) in the ring GF (2) [z];
i.e., there exists C’(z) such that A(x) ® B(z) & C(z) = r(x) ® C'(x). Denote the
transformation that maps the pair of polynomials (A(z), B(z)) to the polynomial C(x)
by ®;., where r is used to emphasize that this transformation depends on the irreducible

polynomial r(x). The set of polynomials of degree < n, along with ring addition @ and

10

multiplication ®, defined above, is a standard basis representation? of GF (2"). When
the irreducible polynomial A is clear from context, we shall often drop it and denote

GF (2™) multiplication simply by ®.

Example of multiplication in standard representation In this example we show
the field multiplication of two elements in GF (24), using the standard representation
induced by the irreducible degree-4 polynomial r(x) := 2% 4+ x + 1. Consider the two
elements A(z) = = + 2> and B(z) = 1 + 22, represented in the standard basis by
a = (1010),b := (0101). To compute the 4-bit string ¢ = a ®, b we work as follows:

e Compute the product C’(z) of the two polynomials A(x), B(x) in the ring
GF (2) [2], namely, C'(x) := A(z) ® B(z) = (z + 23) © (1 + 2?) = 2 + 2% + 2°

(middle term canceled because we work modulo 2).

e Compute the remainder C(z) of the division of C’(z) by r(x); in our example
C(z) = 2? and one can verify that deg(C) < 4 and r(z) ® z = C’'(z) ® C(z), as

defined above.

Thus, a ®, b = ¢ where ¢ := (0100).

Field multiplication reduces to ring multiplication The previous definitions and
example show two main points that we exploit next. First, when multiplying two elements
in the standard representation induced by r(x), it suffices to (i) multiply polynomials
in the ring GF (2) [z] and then (ii) compute the remainder modulo r(x). Second, the

structure of r(z) may influence the complexity of computing field multiplication.

2.3 Normal Bases

n—1

Given an element o € Fy» a normal basis for over Fy, has the special form of o, a4, ..., a4
let us denote by «; the element ad'. Notice the fact that aﬂj = ;1. Therefore, given
an element a = ag,a1,...,a,—1 in Fyn note that a? = (an—1,a0,a1,...,an—2) so taking
an element to the power of ¢ is computationally simple as a right cyclic shift of the
vector once and taking an element to the power of ¢* is doing a cyclic shift by k places.

In our case, for ¢ = 2, it is important not only that squaring can be executed in a
fast manner for itself, because fast squaring affects the time needed for exponentiation
using the repeated squaring and multiplication method, which by itself can make the
inversion over the field much faster.

Additional important advantage is derived from the following observation, «; -
a;j=(o- aj,i)i (assuming j > i). So the k' coefficient of o - i; is the k' coefficient of
(- aj_i)i which is the k — 7 coeflicient of o - oj_;. Therefore for all ¢, j, k where k,j > ¢

it holds that Tg = T&;ﬁi, by taking k = i¢. So in fact we only need a multiplication

2The term “basis” refers to the algebraic fact that the n elements 1,z,2%,...,2" ! are linearly
independent over GF (2), i.e., they form a basis for GF (2") over GF (2); cf. [R. 97a] for more information.

11

)

table for o - a; for all 0 < ¢ < n and by this reducing by one dimension the size of
multiplication tables, saving more space. Luckily, it was proved that there is a normal
basis for any finite Galois extension of fields (The normal basis theorem), conjectured
by Eisenstein in 1850 [Eis50] and first proved by Hensel in 1888 [Hen88].

In conclusion, only one multiplication table would suffice, notice that the time needed
to multiply two elements depends on the number of non-zero entries in the table which
will be called the complexity of the base and will be denoted by ¢(N) where N is the
normal basis of the field. So, we will be interested in bases with low complexities. An
important theorem proved by Mullin et al. [R. 89] states that for each normal basis N
of Fyn over Fy, ¢(N) > 2n — 1, bases with this complexity will be called optimal normal
bases. Optimal normal bases don’t exist for all n for ¢ = 2, but according to [Gao93] for

27 values of n where 2 < n < 64 for which there exist a normal basis in Fy» over Fj.

12

Chapter 3

Theoretical Discussion

3.1 Fast Multiplication in GF(2")

Finite field multiplication is generally far more time consuming than addition, both in
terms of bit operations and in terms of machine cycles, when turning into finite field
software implementation. This particularly holds for the fields we are interested in,
finite fields of characteristic 2.

Multiplication speed in GF(2") is tightly connected to the field representation
(addition is XOR under any basis for GF(2") over GF(2)). Two of the most common

representations are, as stated in chapter 2,

1. Standard Basis: Elements are polynomials in GF (2) [X] and multiplication is

carried out modulo an irreducible polynomial of degree n over GF (2) [X].

2. Normal Basis: Elements are the Frobenius automorphisms of a basic element «

and multiplication is defined by a matrix. See [Gao93] for additional details.

We work under the standard basis. To speed up multiplication we choose a special kind
of irreducible polynomial, called a 2-gapped polynomial. We show that multiplication
in GF(2") can be reduced to one multiplication of polynomials of degree n-1 and two
multiplications of polynomials of degree % over the ring GF (2) [X] and 2n additions in
GF(2). Let us first introduce the notion and importance of k — Gapped polynomials in
GF(2") field for k = 2, as described in algorithm 3.1.

Definition 3.1.1. An irreducible polynomial r(x) = Y a;x' of degree d is k-Gapped

if it can be written as 7(x) = 2% — r1(z) where deg (r1(x)) < d/k

Denote by hi(z) the value of h(x) calculated on step 7 in algorithm 3.1

Lemma 3.1.2. hj(x) = ho(x) mod r(x)

13

Algorithm 3.1 2-Gapped Multiplication in GF(2")

Input:
e a(z),b(z) of degree at most n — 1 in Fy [X].

e r(z) = 2" — ri(x), 2-Gapped polynomial in Fy [X] of degree n.
Output: h(z) = (a(x) *b(x)) mod r(x)
1 h(z) « a(z) = b(z)
2: h(z) + hgn/zfl(x) @® B2 Y z) O ry(x) * 2"

377./2
3. h(z) < W V(@) ® b P (x) © r(2)
4: return h(x)

Proof.
a(x) - b(x) = hi(x)
— () + 2™ Bl() deg (1 (2)) <2~ 1
= h(z) +7r1(z) - hi(z) - " mod r(z) 2" =ri(zr) mod r(x)
= ho(x) mod r(x)

Lemma 3.1.3. deg (ha(z)) <3n/k —1

Proof.

deg (h2(x)) = max (deg (h(f(ac)),deg (x"/2) + deg (h%(w)) + deg (rl(x)))
<max(n—1,n2+n/2—1+n/2)
= 3n/2 —1
Lemma 3.1.4. ho(x) = hg(x) mod r(x)

Proof.

ho(z) = hy(z) + ™ - hy(x) deg (h3(z)) <n—1 deg(h3(x)) <nf2—1
= hY(z) +ri(z) - hi(x) mod r(z) 2" =ri(x) mod r(z)
= h3(z) mod r(z)

Lemma 3.1.5. deg (h3(z)) <n—1

Proof.

deg (h3(z)) = max (deg (hg(m)) ,deg (h%(:n)) + deg (r (:E)))
< max (n—1,7/2 — 14 nj)
=nfa—1

14

Algorithm 3.2 k-Gapped Multiplication in GF(p™)

Input:
e a(x),b(x) of degree at most m — 1 in Fp[z].
o

() =

Output: h(x)
1 €« mk

2: h(zx) < a(x) ® b(x)

3: for i =k — 1 down to 0 do

4: t—m+£L-i

5

6

™ —ri(z), k-Gapped polynomial in Fy[z] of degree m.
= (a(x) - b(z)) mod r(z)

h(z) < hi Hz) @ M a) O ri(x) @ 2™

: return h(z)

Lemma 3.1.6. h3(x) = (a(x) - b(x) mod r(z))

Proof. From lemma 3.1.2 and lemma 3.1.4 we get hs(x) = a(z) - b(z) mod r(z). From
lemma 3.1.5 we get that deg (hs(x)) < n — 1 so the equality holds. O

Algorithm 3.1 minimizes number of polynomial multiplications, can be adapted to
multiplication in our field of interest, GF(264).

3.1.1 Generalization for Optimized Multiplication in k-Gapped Finite
Fields

In algorithm 3.2 we also present an extension to finite field multiplication in general
k — Gapped fields GF(p™).

Let us denote by A(n) and M(n) as the numbers of additions and multiplications in
GF(p) that performed when multiplying to polynomials of degree at most n over the
ring GF (p) [X].

Theorem 3.1. Algorithm 3.2 performs,

o 2m+ A(m — 1)+ k- A () additions in GF(p¥).

o M(m—1)+k-M () multiplications in GF(p¥)
Proof. We will count separately the number of operations within polynomials multipli-
cations and out of them.

e The number of additions in GF (pk) which are not part of polynomial multipli-
cations is at most 2m. In each iteration we add the polynomial hiﬂ_l(x) O]
r1(xz) ® x'~™ which has at most 277” non-zero coefficients, which are the topmost

2m

coefficients, while others will be zero. This addition requires =* additions. Over

k iterations there will be 2m additions in total.

e There are no multiplications in GF(p) except for those which are part of polynomial

multiplications.

15

Algorithm 3.3 Nalve polynomial multiplication

Input:
a(x),b(x) of degree at most n — 1.
Output: ¢(z) = a(z) © b(z)
1: fori=0,...,n—1do
2 ¢+ 0
3 for j=0,...,7do
4 Ci ¢ Da;Obi_j
5. fori=mn,...,2n — 2 do
6: ¢+ 0
7 for j=1i,...,2n—2 do
8 Ci & Up—1+i—j © bj_nt1
9

. return c(z) = Y7 2 ¢; - 2

e Let us denote by A(n) and M (n) the number of additions and multiplications in
GF(p) needed to multiply two polynomials of degree n over the ring GF(p) [X]
respectively. Our algorithm first multiplies two polynomials of degree at most m—1
in and then multiplies k£ times polynomials of degree 7, all over the ring GF (p) [X].
This takes M (m—1)+k-M (%) multiplications and A(m—1)+k-A () additions
in GF (pk) O

Notice that the number of multiplications and additions depends on the algorithm
that is used to multiply polynomials. The complexity of polynomial multiplication has
been extensively studied. The number of bit operations of the naive algorithm (see
Algorithm 3.3) is O (nQ) More sophisticated algorithms by Karatsuba [KO63] and by
Schonhage and Strassen [SS71,D. 91] are asymptotically faster, requiring O (nl°g23)
and O(nlognloglogn) bit operations, respectively.

In this work we use the naive Algorithm 3.3 because it is fastest for polynomials of

degrees below 1000 [M. 05] and its simplicity makes it a prime starting point for study.

Lemma 3.1.7 (Correctness). Algorithm 3.2 outputs (a(x) - b(z)) mod r(x).

Proof. Denote by hj(x) the value of h(z) as computed after the iteration in which
i = j and hy(x) will be h(x) before the loop. So hy(x) = a(z) - b(x). We will prove by
induction on j that hj(z) = (a(z) - b(xz)) mod r(z) and that the degree of h;(z) is at
most m+j - £ — 1.

In the base case, j = k, and hi(z) = a(x) - b(z) so its’ degree is at most 2m and the
claim obviously holds.

Assume the for some n we know that the claim holds, now we shall prove it for n — 1.

Denote by t the value of variable ¢ in this iteration where t = m + ¢ - (n — 1). According

16

to step 5 of the algorithm Ay, 1(x) = (hn)y ' (@) 4 (ha) T (2) - 71 () - 2'™ so,

deg (hn-1(2)) = deg (hn)f " (@) + ()™ (2) -1 (2) - 2 ~)

= max <deg ((hn)g_l (:Jc)) ,deg ((hn)?%_l () -ri(x) - xt_m)>
=max(t—1,—1+L+t—m)

Since k > 2 then £ = m/k < m/2 so.

deg (hp—1(z)) <max(t—1,2-mp+t—m)
=max(t—1,t—1)
=t—1
=m+/{-(n—1)—1.

Now we shall prove by induction that h;(x) = hg(z) mod r(z). The base case is

obvious for k. Assume that hy(z) = hi(x) mod r(z) , since deg (hn(z)) < m+£-(n)—1

t4+0—1

then, it can be written as (hy,), () -ri(z) - 2t—™

8
N~—
=
=
8
~—
8

o (@) + ()T
: ()™

(ha)i 71 (

=+ O
L
&
+
8
~—
8
3
8
=
@}
o
=
—~
8
~—

S
<
L
&
l
8
N—
&Fﬁ

So we return hg(z) of degree at most m — 1 the equivalent to hi(z) = a(x) - b(x)

modulo r(z), which proves the correctness of the algorithm. O

3.1.2 Finding a k-Gapped polynomial

According to Lidl and Niederreiter [R. 97b] the probability that a randomly chosen
polynomial is irreducible is roughly 1/n. In a paper published by HP [G. 98] it was
mentioned that in binary extension fields, it should be quite probable (i.e. probability
is bigger than a constant) to find & — Gapped pentanomials for & s.t. (g) ~ n, they also
present a list of & — Gapped pentanomials that satisfy this equality for any practical n.
They also raise an open question whether do irreducible binary pentanomials exist of

degree n that are Q<v3 n2> gapped.

Notice that multiplying any polynomial of degree m by a quadrinomial or pentanomial
can be done in O (m), so under the assumptions presented in [G. 98], this is a modular

reduction in the polynomial ring GF (2) [X] with linear time complexity.

17

3.2 Generalizing Gao & Mateer’s Additive FFT for affine

subspaces

The Additive FFT algorithm introduced by Gao and Matteer [S. 10], when applied to
binary fields, evaluates a 2" — 1 degree polynomial over a subspace of dimension n for
general n in a finite field of characteristic two. It was the first algorithm that broke the
Q(n - log?(n)) multiplications barrier, with only O(n - log(n)) base field multiplications.
See [Mat08] for previous FFT algorithms with the same runtime that were suited only
for subspaces with dimensions which is a power of two.

We present a variation of that algorithm that fits affine subspaces as well. For the
sake of completeness, we will describe the whole algorithm, relying on formulations and

notations used by Gao and Mateer in their paper mentioned above.

3.2.1 Taylor Expansion

The additive FFT algorithm computes at some points the generalized Taylor expansion
of polynomials at (2% — z). A more general definition can be found in [J. 03] and [S.
10].

Given a polynomial f(z) € F[z] of degree strictly smaller than n = 2#+2 where F is
a finite field of characteristic 2, the taylor expansion algorithm of f at (xz — :L') finds

m = % linear functions ho(x), h1(x), ..., hm—1(x) € F[z], such that,
f(z) = ho(x) + hi(z) - (22 =)+ ... + Ay - (2% —)™
We will denote this expansion as
T(f,n) = (hoy..., hin—1)

To compute the Taylor expansion, we first write f(z) as f(z) = fo(z)+22 " (fl (z) + 22" fo (x))

where
o deg fo < 2k+1
o deg fi < 2F
o deg fo < 2F
I is a finite field of characteristic two, therefore,
22 = (2% - x)2k 122
thus
@) = fol@) + 2% (Au(2) + £2@) + (@ =) (f1(2) + fol@) + 27 fo(0))

18

Algorithm 3.4 Taylor Expansion at 2% — x

Input: (f,n) where n > 1 and f(z) € F[z] of degree < n.
Output: T(f,n), the taylor expansion of f(z) at 2% — .
1: if n <2 then
2 return f(z)
3: Find k such that 28! < n < 2k+2,
4: Divide f(x) into three parts as f(z) = fo(z) + 2?1 (fl (x) + x2kf2(x)>

Set h < fi+ fa, g0 fot+a2h, g1 h+2%fo
: Vi« T(go,n/2)
: Vo« T(g1,n/2)
: return (V1,V3)

0 N O Ot

Let h(z) = fi(z) + fa(z), go(z) = fo(z) + $2kh(~’f)7 g1(x) = h(@) + 2" fo(a).
Then,
f(@) = gol@) + g1 () (2% —)%

Due to the degrees of fy, f1, fo we know that
deg go, 91 < 287

Therefore,

T(f,n)= (T((go,2’“+1>),T (91, 2k+1))

The time complexity of the algorithm, as described in [S. 10] is,

< n- [logy
= %n [log,

A full description of the algorithm can be found in algorithm 3.4.

(n/t
n/t

)], for any n
(n/t)], when n/t is a power of two

3.2.2 Additive FFT in Binary Fields Over Affine Subspaces

In this section we will conform with the notations of Gao and Mateer and extend their
algorithm presented in [S. 10] to calculate additive FFTs over any affine subspace and
not only over subspaces.

Our additive FFT algorithm works over a finite field F of characteristic 2. It gets
as input a polynomial f(x) € F[x], a basis of a subspace (f1, ..., 3y) of dimension m,
where 31, ..., B, are linearly independent over GF(2), it also gets as input an affine shift
SB.

Let us define an ordering of the elements of B. Given a number 0 < i < 2™ with

binary representation
i:a1+a2'2+"'+am'2m_l = (a17a27"' 7am)2a

19

Where each a; is either 0 or 1. The ith element of affine subspace B is
B[Z] =s+a1B +af2+ -+ amBm.

The algorithm’s output is the evaluation of f(x) over all elements in the affine

subspace B = sg + (f1, ..., Bm), and will be denoted as,
FFT(f,m,B) = (f (B[0]), f (B[1]),--- , f (B]2™ —1]))

The algorithm is recursive, we show how to reduce a problem of size n > 2 to two
problems of size k = n/2 = 2m~! Let

vi=BiBnpt, 1<i<m-—1

sq = sp - B!

and

G =5sc+ (Y1y-sYm) (3.2)

Let g(x) = f(Bmz). Evaluating f(z) over B is equivalent to the evaluation of
g(x) over GU (G + 1). So we wish to calculate FFT(g,G) and FFT(g,(G + 1)). Let
D =sp+(01,...,0m—1) where,

Si=v—v 1<i<m-1

We know that each ~y; is not 1 or 0, so J; is not 0. Since 71, ..., Vm and 1 are linearly
independent over GF(2) the elements 01, ..., d,,—1 are linearly independent over GF(2)

as well and span the affine subspace,
D=sp+ <(51,...,(5m_1>
of size k = 2m~1 =n/2.

Notation 1. Given a = a1y1 + -+ + Gm—17Ym—1 € G, the element o is

2

af=a"—a=a101+ + am_10m_1

Therefore,
Gli]*=D[i], 0<i<k

Suppose we are given the Taylor expansion of g(x) at % —x.

N
—_

g(z) = (gio + gnx) - (2° — I)Z (3.3)

i

I
)

20

and g;; € F. Let

k—1 k-1
go(x) = Zgio -2ty and gi(z) = Zgﬂ -zt (3.4)
=0 =0

Notice that for any a € G and b € GF (2), since (a + b)? — (a + b) = o*, we have
gla+b) = (go(a") +a-g1(a’)) +bg (a) (3.5)

Therefore, the FFT of g(z) can be calculated from the FFTs of go(z) and g1 (z) over D.
Let the FFT of go(z) and g1(z) over D be,

FFT(go,m —1,D) = (ug,u1,...,uk—1), ui = go(Dli])

' (3.6)
FFT(g1,m—1,D) = (vg,v1,...,v5-1), v; = g1(DJi])

Equation 3.5 implies that
FFT(g,m—1,G) = (wo, w1, ..., wk_1)
Where w; = u; + G[i] - u; for 0 <14 < k. It also implies that,
FFT(g,m —1,G+1)=FFT(g9,m —1,G) + FFT(g1,m — 1, D).

This reduction step is applied recursively until the input polynomials are linear functions
that can be evaluated easily. In algorithm 3.5 a summary of the written above can be

found.

The only two additions we made to Gao and Mateer’s algorithm is calculating
recursively a series of affine shifts. The only place which these shifts take place is the

bottom of the recursion, where we evaluate the linear function as described in step 1.

We will now compute the runtime of the algorithm. To compute the basis elements of
G and D and the affine shifts in step 5, we perform 2m+2(m—1)+---4+2-2 = m(m+1) =
O(log3(n)) multiplications, and the number of additions is m+ (m—1)+---4+2 = m(m—
1)/2 = O(log3(n)). In step 2, we compute the powers of 5%, for 2 < i < n—1, with a total
number of multiplications that is at most (27 —2)+ (2™ 1 —2)+- .- +(22-2) < 2.2™ = 2n.

Up until now, the whole computation can be preprocessed, and costs negligible time.

In step 1 the recursion ends and it costs 2 multiplications and 2 additions. Step 2
costs an additional n — 1 multiplications (besides computing the powers of 3,,). The
Taylor expansions cost additional % -n - logy(n) — % - n additions. Step 7 has two
invocations of the FFT algorithm of size n/2. Step 10 costs n multiplications and n
additions. Let M(n) and A(n) denote the number of multiplications and additions
performed by the algorithm, respectively, on an input of size n. Then M (2) = A(2) =2,

21

Algorithm 3.5 Additive FFT of length n = 2™

Input:
o f(z) € GF (2) [X] of degree < n = 2™.

B = {(f1, ..., fm), & basis with linearly independent elements over GF(2).

e S, an affine shift to the subspace spanned by g;’s.
Output: FFT(f,m,B,S) = (f(B[0]+S5),.... f(Bln—1]4+5))
1: If m =1 then return f(5), f(S + 51). > Linear Evaluation Phase.
2: Compute g(z) = f (Bnz). > Shift Phase.
3: Compute the Taylor expansion of g(x) as in algorithm 3.4 > Taylor Expansion
Phase.
4: Let go(x) and g1(z) from g(x) as in (3.4). > Shuffle Phase.
5: Compute vi < Bi- Bt 8 %.2 —vyifor1 <i<m, sg+ S-3,' and
Sp < $%& — sG-
6: Let G < sg+ (715 -y Ym—1), and D < (d1,...,0m—1).
7. Let k = 2™~ compute
FFT(go,m —1,D,sp) = (up,u1,...,ux_1), and
FFT(g1,m —1,D,sp) = (vo, V1, .., Vk_1)-
8 for 0 <i< kdo
: w; < u; + Gi] - v;
10: W41 — W; + ;. > Merge Phase.
11: return (wo, w1, ..., Wp—_1)

and for any n = 2™ > 2, it holds that

-n - logy(n) — 37” + 1,
n - (logy(n))* + 2 - n - logy(n)

=
2
|
= DN

22

Chapter 4

CPU

In this chapter we briefly discuss the implementation of the additive FFT in binary
fields algorithm and the finite field multiplication operation on which it relies. We rather
state the functionality of our implementation so it can be compared to the GPU finite
field arithmetics and implementation. We clarify that the main scope of this work is
)

not a CPU implementation of neither additive FFTs over binary fields or these fields

multiplication and this chapter is given for completeness.

4.1 Finite Field Arithmetics

In this section we discuss the implementation of finite field arithmetics needed to
compute the additive FFT in GF (264).

4.1.1 Element Representation on CPU

A GF (264) field element represented in the standard basis is a binary polynomial whose
degree is at most 63. All operations are performed modulo an irreducible polynomial
of degree 64, that will be denoted by r(z) Each element in GF(264) is known to be
equivalent to a unique polynomial modulo r(x). Each element e will be represented in

the polynomial basis using the polynomial
63
pe(z) = Z ctat
i=0

4.1.2 Finite Field Library API

To support the implementation of the FFT algorithm on CPU we have implemented

the following operations for elements in GF(264),

Addition Given two elements a, b the representation of a + b is ¢, @ ¢,. The implemen-
tation of addition in GF (2’“) is just bitwise XOR of the two elements.

23

Multiplication See section 3.1 for a full theoretical description of this operation.

Implementation is given in section 4.1.3.
Squaring Implemented as a multiplication of an element by itself.
Exponentiation Implemented using the repetitive squaring and multiplying algorithm.

Inversion The inverse of an element a is an element b s.t. there exists a polynomial g(x)
for which a(z)-b(x)+¢(x)-r(x) = 1.The inversion is implemented by implementing
the extended euclidean algorithm to find this b. The inversion operation is used
only n times when evaluating an FFT of a subspace of size 2" and due to the very

limited use of this operation, it was implemented in a very naive manner.

4.1.3 Implementation of multiplication in GF(2%)

GF(2™) multiplication has received considerable attention (cf. [J. 86, E. 96]) and is
implemented efficiently for CPU in popular software libraries like NTL [V. 03] and
MPFQ !. Moreover, in large part because of the importance of GF (2") multiplication,
Intel introduced in 2010 a dedicated CPU instruction called CLMUL which performs
GF (2) [x] ring multiplication of polynomials of degree up to 64 in 7-14 cycles [Fogl6].

Both NTL and MPFQ use this dedicated instruction. This instruction can be used
to multiply polynomials of higher-degree, thereby supporting GF (2") multiplication for
values n > 64 (cf. [C. 12] for one such implementation).

Algorithm 6.1 shows how to perform finite field multiplication in binary fields with
elements being represented in the standard basis and the irreducible polynomial is
2-Gapped. The multiplication in GF(2") by this algorithm is composed of three multi-
plications of polynomials in the ring GF (2) [X] of degrees up to k — 1 and to additions
of such polynomials. The multiplication of such polynomials can be implemented using
the CLMUL instruction that was mentioned before. The implementation is detailed in

algorithm 4.2.

Notation 2. Given a polynomial p(z) = 3" apz® we will denote by pZ(x) = f;:i aprh

Note that the multiplication by 232 in line 2 will be implemented by an arithmetic
shift-left of the bits.

The NTL library proposed the same implementation shown here when performing
multiplication with a 2-Gapped irreducibles in binary fields. While NTL’s implemen-
tation is more general, we focused in our CPU implementation on the specific field of
GF(264). The implementation, using CLMUL instruction is described in algorithm 4.2.

Our C++ implementation of algorithm 4.2 cuts NTL’s implementation by half. A

full comparison and performance analysis is detailed in chapter 8

"http: //mpfq.gforge.inria.fr/doc/doc.html

24

Algorithm 4.1 Multiplication in GF(2")
Input:
e a(x),b(z) of degree at most n — 1 in Fo [X].
e r(x) =" + r1(z), 2-Gapped polynomial in Fy [X] of degree n.
Output: h(z) = (a(x) ® b(x)) mod r(z)
L h(z) « a(z) © b(x)
2 h(x) hy TN @) @ B3 @) O () © 2
3. h(z) < W (x) @ by P (z) @ r(2)
4: return h(x)

Algorithm 4.2 2-Gapped Multiplication in GF (264) using CLMUL

Input:
e a(x),b(z) of degree at most 63 in Fy [X].

e r(x) = 2% + ri(x), 2-Gapped polynomial in Fy [X] of degree 64.
Outputs Hz) = (u()-4)) mod 1()
1: h(z) + CLMUL (a(z), b(z))
2: h(z) h95) + CLMUL (h127 ri(z)) - 232
3: h(z) < h§*(x) + CLMUL (hg; x))
4: return h()

4.2 Parallel FFT and inverse FFT implementation

We implemented the additive FFT and IFFT algorithms of Gao and Matteer [S. 10].
The implementation was parallelized to a large number of cores using openMP [B.
07]. Unfortunately, despite being very fast for a single thread, the implementation
didn’t scale-up for large number of cores. The reason for this lack of scalability of this

implementation is left out of the scope of this work.

25

26

Technion - Computer Science Department - M.Sc. Thesis MSC-2016-15 - 2016

Chapter 5

GPU - Introduction of Register
Cache

5.1 Introduction of GPUs!

The Graphics Processing Unit (GPU) is a prarallel machine that runs many threads
in parallel. Threads are the basic units of execution in it that process words of size
B. Each thread has local memory in the form of registers. The number of registers in
the GPU is limited and they are partitioned evenly among running threads. Threads
are grouped into warps. A warp is a set of W threads that operates in lock, i.e., at a
given step all threads in the warp execute the same instruction. A thread-block is a
set of warps that can share a dedicated memory used for for communication between
threads of the same thread block. The set of instructions is fixed and called PTX-ISA.
A set of thread-blocks is called a grid and is the largest unit of computation we are
interested in, representing all running threads. It has global memory of practically
unlimited size but accessing it is slower than accessing the shared memory or local
memory (registers). Each thread also has a unique thread-ID which it has access to.
These IDs are distributed among threads in a way that all threads of the same warp
posses W consecutive IDs.

Grouping threads into warps has a major significance not only on the computational
model itself but on global memory accesses efficiency as well. Global memory accesses
are issued by the device in the form of transactions where each transaction reads from
or writes to a large number of addresses in a single burst. All load and store operations
issued by threads of the same warp are coalesced by the device to minimize the number
of transactions required to perform the requested operations. The more scattered the
load/store addresses are, the more transactions will be needed to perform the load/store

operation, therefore each GPU programmer must make an effort to make his global

!Based on nVidia’s white papers of the Fermi and Kepler architectures.
(http://www.nvidia.com/content/pdf/fermi white papers/nvidia fermi_compute_architecture whitepaper.pdf)
(http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf)

27

memory accesses as coalesced as possible. GPU is consisted of many ALUs. Each warp
is executed on a single ALU. The ALUs can execute the same instruction over W inputs.
At each time step each ALU performs an instruction with input begin sent by each of
the threads of the warp. ALU executes the instruction on all inputs in parallel and
returns each result to the relevant thread. This kind of computation in which a single
instruction is executed, in parallel, on many inputs is called SIMD (single instruction -
multiple data). Since ALUs are SIMD, the processing time increases if threads diverge
on the instruction executed at a given time step. Thus, warps whose threads all give the
same

be given to maintaining a non-divergent execution of all warps.

Intra-warp communication is very common and can be done in two ways,

1. Shared Memory, to which one thread can write data that, later on, other threads

can read.

2. Shuffle, which is a special instruction executed by all threads in the same warp
where thread i shares a value v; stored in its register and also states a number
t; of a thread in the warp. The call shuf fle(v;,t;) will make thread ¢; write the

value v, into a register of thread 1.

The main complexity measures we seek to optimize are minimizing the communication
complexity between the threads and memory, by efficiently using the registers and
minimizing accesses to shared and global memory. We also wish to minimize the parallel
running time, measured in number of parallel instructions. This will be achieved by
minimizing divergent executions and having all global memory accesses coalesced. We
shall first look at multipoint multiplication over finite fields of characteristic 2, and
later on we will examine the interpolation and multi-point evaluation problems, also
known as FFT and inverse-FFT. In this latter case we care about evaluation over affine
subspaces.

The key to the efficient implementation of the finite field multiplication is a novel
performance optimization methodology that we call register cache and is discussed in
chapter 5.2. This methodology allows to speed up an algorithm that uses shared memory
for caching its input by transforming it to use per-thread registers instead. We show
how to replace shared memory accesses with the shuffle intra-warp communication
instruction, and thereby significantly reduce and even entirely eliminate shared memory
accesses. We thoroughly analyze the register cache approach and characterize its benefits
and limitations.

We apply the register cache methodology to the implementation of the binary finite
field multiplication algorithm on GPUs. We achieve up to 138x speedup for fields of
size 232 over the popular highly optimized Number Theory Library (NTL) [V. 03] which
uses specialized CLMUL CPU instruction, and over 30x for larger fields of size below 22°6.
Our register cache implementation enables up to 50% higher performance compared to

the traditional shared-memory based design.

28

Next, we deeply elaborate an implementation of additive FF'T and inverse additive
FFT over affine subspaces that achieves high occupancy, meaning that the processing
hardware in the GPU chip is idle in a negligible part of the computation time. All

implementations are non-divergent and have no non-coalesced global memory accesses.

29

5.2 Intra-warp register cache

On-die shared memory is commonly used for data sharing among threads in the same
TB. One common practice is to optimize input data reuse, whereby the kernel input
is first prefetched from the global memory into the shared memory, thus saving global
memory access cost on the following accesses.

In this section we focus on the register cache, a design methodology whose goal is
to improve kernel performance by transforming computations to use registers instead
of shared memory. We use private registers in each thread as a distributed storage,
effectively implementing a layer of user-managed cache for the threads in the same warp
with the help of the shuffle() instruction.

The benefits of using registers and shuffle() are well known in SIMD architec-
tures [B. 14], and are embraced in GPU computing [nVil5, V. /P. 15,A. 11,S. 16,G. 15].
The shuffle()-based design removes the 7 B-wise synchronization overhead associated
with the use of shared memory, and allows higher effective memory bandwidth to the
data stored in registers. However, the existing uses of shuffle() are application-specific
and offer no guidance for the design of the algorithm. Here we suggest a systematic
approach to constructing shuffle()-based algorithms, aiming specifically to optimize

applications with significant input data reuse.

Problem setting We consider a common application scenario in which threads
prefetch the shared 7B input into shared memory and then access it repeatedly. Our
goal is to reduce the use of shared memory as much as possible by identifying sharing
and access patterns among the threads of a single warp, and replacing certain or all

shared memory accesses by shuffle().

Overview We start with a shared memory-based implementation. The following steps
accomplish the kernel transformation to use registers instead.
1. Identify warp inputs in shared memory.
2. Distribute inputs across warp threads such that each thread stores some part of the
shared input in its registers. The optimal distribution is application dependent.
3. Logically break computations into two interleaving bulk-synchronous phases:
communication and computation. The communication phase corresponds to the
shared memory accesses in the original implementation. The computation phase

is similar to the original implementation, but uses only the data in local registers.

Communication phase We now describe the communication phase transformations

in greater detail.
1. For each thread, declare the data to be read from other warp threads. We refer
to each access as a Read(var, tid) operation, such that tid is the thread to read

from, and var is the remote variable holding the data, both determined by the

30

data distribution.

2. For each thread, compile the list of local variables required for the other threads
by observing Read operations issued by them. Declare each such variable using
Publish(var) operations.

3. Align Read and Publish operations in each thread and across the threads, such
that (a) there is one Read for each Publish in each thread, and (b) there is one
Publish for the value in the remote thread for each local Read. This step might
require duplicating some calls to achieve perfect alignment, and/or redistribution
of the inputs to reduce conflicts, i.e., when aligned Read requests from different
threads need different variables from the same thread. Replace Read-Publish
tuples with shuffle() calls.

5.2.1 Example: 1D k-stencil

We now illustrate this scheme using a 1D k-stencil kernel. We then apply the same

principles to the finite field multiplication in Section 6.3.

1D k-Stencil Given an input array ag,...,a,—1, the output of a k-stencil kernel is
itk]
an array bg,...,b,—1 such that b; = %ﬁ“al, assuming a; = 0 for i <O or i > n. kis

also called a window size. Note that each input element is read 2k + 1 times during
computation. Thus, any implementation must cache the input in order to exploit data
reuse.

In what follows we use k = 1 for clarity, and remind that YW =32 threads per warp.

Shared memory implementation We consider the following implementation: (1)
copy input from global memory into a temporary array in shared memory by using all
the 7B threads; (2) wait until the input is fully stored in shared memory; (3) compute
one output element; (4) store the results in global memory.

We follow the register cache methodology suggested above to eliminate shared

memory accesses.

Step one: Identify warp inputs Given that ¢ is the index of the output element
computed by thread 0 in a warp, the warp calculates the output elements ¢, ..., + 31,

and depends on 34 input elements ¢ — 1,...,7 4 32, denoted as input array.

Step two: Determine input distribution We use a round-robin distribution of
input arrays among the threads, as illustrated in Figure 5.1. In this scheme, input [i]
is assigned to thread j=t¢ mod 32, where j is the thread index in the warp. Thread
0 and thread 1 each store two elements, while all the other threads store only one.
We denote the first cached element as r[0] and the second as r[1]. Observe that this

distribution scheme mimics the data distribution across banks of shared memory.

31

Input 3|4

Threads

Output 29

Figure 5.1: Input distribution in 1-stencil computation

Tid [0 1 2-29 30 31
Iteration 1 R(0,i)
P(0)
Tteration 2 | R(0,1) R(0,2) R(0,i+1) R(0,31) R(1,0)
P(1) P(O) P(0) PO) PO
Iteration 3 | R(0,2) R(0,3) R(0,i+2) R(1,0) R(L1)
P PO P(0) PO) PO

Table 5.1: Read (R) and Publish (P) operations in each iteration of the 1D 1-stencil
computation. Tid denotes the thread index in a warp.

Step three: Communication and computation We identify three communication
phases — one for each input element read by each thread. Table 5.1 lists all Read (R)
and Publish (P) operations performed by each thread. Read(i, j) indicates a read from
thread j of its element r[i]. The first communication phase is entirely local, and provided
for clarity.

We now merge Publish-Read tuples into shuffle(). At this point computations in
a warp do not use shared memory. All that remains is to efficiently compute thread
and register indexes in the shuffle() calls while avoiding divergence.

The complete implementation is in Listing 1.

5.2.2 Analysis

Bank conflicts and shuffle() conflicts One of the main challenges of the register
cache design is to transform the Publish and Read operations into shuffle() calls. In
particular, if there are two or more threads performing
Read(var, tid), such that tid is the same and var is different, this is called a conflict,
since thread tid may fulfill these requests only in multiple Publish calls.

A natural question is whether such register cache conflicts are more likely than the

conflicts in shared memory in the original implementation. We argue that this is not

32

Listing 1 1-Stencil implementation using the register cache.

1 #define REGISTER_ARRAY_SIZE 2

2 #define FILTER_SIZE 1

3 __global__ void kstencilShuffle(

4 int* in,

5 int* out,

6 int size)q{

7 int threadInput [REGISTER_ARRAY_SIZE];

8 int threadOutput = 0, reg_idx, tid_idx;

9 int lindex = threadIdx.x & (WARP_SIZE - 1);
10 int gindex =

11 threadIdx.x + blockIdx.x * blockSize.x;
12 // PREFETCH. note: in %s padded by FILTER_SIZE
13 int lowIdx = gindex - FILTER_SIZE;

14 int highIdx = lowIdx + WARP_SIZE;

15 threadInput[0] = input[lowIdx];

16 threadInput[1] = input[highIdx];

17

18 //First iteration - data avatilable locally

19 threadOutput+=threadInput [0];

20

21 //COMMUNICATE + COMPUTE

22 reg_idx=(lindex==0)7 1 : 0 ;

23 tid_idx=(lindex+1) & (WARP_SIZE -1);

24 threadOutput+=

25 __shfl(threadInput [reg_idx],tid_idx);
26

27 //COMMUNICATE + COMPUTE

28 reg_idx =

29 (lindex == || lindex == 1) 2 1 : 0 ;
30 tid_idx = (lindex+2) & (WARP_SIZE -1);

31 threadOutput+=

32 __shfl(threadInput[reg_idx],tid_idx);

33 output [gindex] = threadOutput / FILTER_SIZE;
34}

the case. Consider the round-robin input distribution we used in the k-Stencil example.
This distribution mimics the distribution of data across the banks in shared memory,
because, to the best of our knowledge, the number of banks in NVIDIA GPUs is the
same as the number of threads in a warp. Thus, when using the round-robin distribution,
the number of register cache conflicts will be exactly the same as the number of shared

memory conflicts.

Moreover, register cache might make it possible to reduce the number of conflicts
by using an alternative, application-optimized distribution of inputs. We leave this

optimization question for future work.

Performance improvement over shared memory The use of a register cache
may significantly improve application performance. The main benefits come from lower
latency of shuffle() operations versus shared memory accesses [nVil5|, and higher

bandwidth to registers compared to shared memory [V.].

As an illustration, we compare the performance of shared memory and register cache
implementations of the k-Stencil kernel. We find that the register cache implementation
achieves 64% higher throughput compared to the shared memory version for input sizes

of 227 elements.

33

Thread coarsening One common technique in program optimizations is thread
coarsening [A. 13]. This technique increases the number of outputs produced by each
thread, and thus enables some of the data to be reused across iterations by storing it in

registers.

In the case of the register cache, thread coarsening is sometimes required in order to
achieve the desired performance improvements. The reason lies in the small number of
threads sharing the cache. Since the register cache is limited to the threads of a single
warp, only the inputs necessary for the warp threads are prefetched and cached. However,
the input reuse might occur across the warps. For example, for the k = 1-Stencil kernel,
the value array[0] in warp 7 is the same as array[31] in warp i — 1; however, both warps
read it from the global memory. Thus, assuming the maximum of 32 warps in a 7 BB, one
T B in a register cache implementation performs 34 x 32 = 1088 global memory accesses,
which is 6% more than the global memory accesses in a shared memory implementation
with the same T B size. Moreover, the number of redundant memory accesses grows
with k, reaching 88% for k = 16.

Thread coarsening helps reduce the effect of redundant global memory accesses. In
Figure 5.2 we show the performance improvement due to computing more outputs per
thread (2,4,8 and 16) for the implementations using register cache and shared memory,
for different values of k. We see that the improvement due to thread coarsening is
almost negligible for the shared memory version, but it is significant for the register
cache. We note that with a single output per thread the shared memory version is
actually 1.8-2 times faster than the one using register cache for all k (not shown in the
graph). However with two and more outputs per thread, the register cache version is

faster.

High data reuse As with any cache, the effect of the register cache is amplified
with higher data reuse. Figure 5.3 shows the relative performance of the register cache
implementation of k-Stencil over the shared memory implementation for different k, as
a proxy for evaluating different amounts of data reuse. The speedup achieved by the
register cache is about 10% higher for & = 15 than for k£ = 1. Each thread computes 16

outputs.

5.2.3 Limitations

Access pattern known at compile time The register cache design may work only
for a shared memory access pattern known at compile time. The main reason is that a
thread must Publish its data exactly when the other threads need it, which requires
static provisioning of the respective

shuffle() calls. For memory accesses determined at runtime, such provisioning is

impossible.

34

o
=
o]
(D]
2 2f i
wn
R * * *
2 4 8 16

Outputs per thread

—o— k =1 - Register Cache —#— k =7 - Register Cache
—eo—k =1 - Shared Memory —— &k = 7 - Shared Memory

Figure 5.2: Speedup obtained from coarsening in the computation of 1 — Stencil and
7 — Stencil for register cache and shared memory implementation

1.75

Speedup
—_
\]
T

1.65

Figure 5.3: Speedup of the shuffle-based k-Stencil implementation over the shared
memory-based implementation as a function of k

Register pressure The register cache uses additional registers, and increases register
pressure in a kernel. Even though recent NVIDIA GPUs increase the number of hardware
registers per T B, the register pressure poses a hard limit on the number of registers

available for caching and must be considered to avoid spillage.

35

36

Technion - Computer Science Department - M.Sc. Thesis MSC-2016-15 - 2016

Chapter 6

GPU - Finite Field Multiplication

In this chapter the GPU implementation of finite field multiplication in GF(2") is
given. We present a sequential finite field multiplication algorithm, and then present a
parallelization for this algorithm dedicated to the GPU architecture when a large number
of multiplications takes place concurrently. Next we show how additional throughput
can be achieved by applying our register cache method shown in chapter 5.2 as well as
reducing shared-memory consumption and traffic. Finally, we evaluate the performance

of our implementation.

6.1 Sequential finite field multiplication

We now provide an efficient algorithm (Algorithm 6.1) for finite field multiplication,
one that reduces field multiplication to a small number of polynomial multiplications; it
requires a special standard basis, induced by a 2-gapped polynomial, defined next. In
this section we use the following notation: given a polynomial h(z) = 1" hz' , we
define hb(x) = Z?:a h;x' =,

Definition 6.1.1 (2-Gapped Polynomial). A polynomial r(z) is 2-Gapped if the degree
of its second-largest term is at most LWJ, e, ifr(z) = 2"4r(z) with deg(ri(x)) <

L2

Algorithm 6.1 performs GF(2") multiplication by reducing it to 3 GF (2) [z] ring mul-
tiplications. Thus, the performance of field multiplication is determined almost entirely
by the complexity of multiplication of polynomials in the ring of polynomials. Therefore,
in the rest of the work we focus on the problem of fast polynomial multiplication on
GPUs.

6.1.1 The CPU CLMUL instruction

Finite field arithmetic, in particular GF(2") multiplication, has received considerable

attention (cf. [J. 86,E. 96]) and has efficient CPU implementations in popular software

37

Algorithm 6.1 Multiplication in GF(2")

Input:
e a(z),b(z) of degree at most n — 1 in Fy [X].

e r(z) = 2" + ri(x), 2-gapped polynomial in Fy [X] of degree n.
Output: h(z) = (a(x) ® b(x)) mod r(z)
h(z) < a(x) © b(x)
hx) e (@) @ L @) © () ©

377./2
h(z) < ht~Y(z) & b (z) © 11 ()
return h(z)

[N

Algorithm 6.2 Nalve polynomial multiplication

Input:
a(z),b(x) of degree at most n — 1.
Output: c¢(z) = a(z) © b(x)
1: fort=0,...,n—1do
2 ¢+ 0
3 for j=0,...,7do
4 ci<—cl-69aj®bi,j
5: fori=mn,...,2n —2 do
6: ¢+ 0
7 for j=1i,...,2n—2do
8 Ci ¢ An—14i—j © bj_nt1
9

. return c(z) = Y270 % ¢; - o

libraries like NTL [V. 03] and MPFQ *. Moreover, in large part because of the importance
of GF (2") multiplication, Intel introduced in 2010 a dedicated CPU instruction set
extension CLMUL, which performs GF (2) [z] ring multiplication of polynomials of degree
up to 64 in 7-14 cycles [Fogl6].

Both NTL and MPFQ use this dedicated instruction. This instruction can be used
to multiply polynomials of higher degree, thereby supporting GF (2™) multiplication for

values n > 64 (cf. [C. 12] for one such implementation).

6.1.2 Sequential polynomial multiplication

The complexity of polynomial multiplication has been extensively studied. The number
of bit operations performed by naive Algorithm 6.2 is O (nz) More sophisticated
algorithms by Karatsuba [KO63| and by Schonhage and Strassen [SS71,D. 91] are
asymptotically faster, requiring O (nlog? 3) and
O(nlognloglogn) bit operations, respectively.

In this work we use the naive Algorithm 6.2 because it is the fastest for polynomials
of degrees below 1000 [M. 05] and its simplicity makes it a prime starting point for
study.

"http: //mpfq.gforge.inria.fr/doc/doc.html

38

NN
.

Tid=2 Tid=3

Ao 1 23 o 7 5
B E

Figure 6.1: Illustration of the access pattern of the multiplication algorithm for GF (24)
with W =4. Each frame encloses the indexes of rows in A and B accessed for computing
the respective rows ¢; specified on the top. Tid denotes the thread index in the warp.

The following simple equation, which explicitly computes coefficients of the output

polynomial, will be used later to balance work in the GPU.

k
. i bp_; k<n-1
o = { 2= % " b " (6.1)

2n—2
Yok Op—ik—i - bi—ng1 k>n—1

6.2 Parallel polynomial multiplication

We consider the problem of performing multiplication of a large number of pairs of
polynomials.

A naive, purely data-parallel approach is to assign a single multiplication of two
polynomials to one thread. Here, each polynomial of degree n — 1 is represented as a bit
array of size n, where the i*" element represents the coefficient of 2% in the polynomial.

This solution is highly inefficient, however. On a platform with B-bit registers and
ALUs, performing single-bit operations uses only 1/B of the computing capacity. We

therefore develop an alternative algorithm which eliminates this inefficiency.

6.2.1 Bit slicing

We reorganize the computation such that one thread performs bit-wise operations on
B bits in regular registers, effectively batching multiple single-bit operations together.
This technique, which packs multiple bits for parallel execution, is often called bit-
slicing [Wik].

To employ bit-slicing for polynomial multiplication, we first introduce a new data
structure, a chunk, to represent multiple polynomials, and then reformulate the multi-

plication algorithm using chunks.

39

»Ne
U

[E—
S
[E—
Y
[E—
[E—
[E—Y
[E—

.
Ol = [— [
OH»—thk
'—‘O»—d:k
Y
D
Ay
A
U
()
O
O
O
(e}
j—

D 4
Fan)
N\

A
U
-
O
[E—

|—>1100

Figure 6.2: Polynomial addition in 4-bit chunks. Computing the output chunk requires
3 bit-wise XORs, each performing 4 concurrent & operations.

Definition 6.2.1 (Chunk). A chunk is an n x B matrix M of bits that represents a
set of B polynomials P(i), i € {0,...,B — 1} of degree less than n. We denote the j**
column in M by M7, and the i*" row by M;. M/ represents the coefficients of the j*
polynomial in the set. In other words, A(7) = 27"~} M/ a".

To explain how to compute using chunks, we first consider polynomial addition. It
is easy to see that it can be performed by bit-wise XOR of the respective rows of the
input chunks A and B. Thus, a single A; ® B; computes the i*" coefficients for all B
output polynomials at once. Figure 6.2 shows two input chunks A, B, and the chunk
representing their sum A @ B. Each chunk represents 4 polynomials of degree 3. For
example, A! represents polynomial z2. Figure 6.2 also shows an example of polynomial
addition using chunks, assuming B = 4.

Similarly, it is straightforward to extend the single-bit polynomial multiplication
Algorithm 6.2 to use chunks. This is done by replacing the references to individual
bits in lines 2,4,6 and 8 with the references to chunk rows, and replacing single-bit

operations with bit-wise operations.

6.2.2 Parallel polynomial multiplication using chunks

We show how to parallelize chunk-based polynomial multiplication. We seek a parallel
algorithm that enables efficient, divergence-free execution by the threads of a single
warp, which is the key to high performance on GPUs.

A simple parallelization whereby one thread computes one row in the output chunk
is inefficient due to divergence among the threads. As we see from Eq. 6.1, different
coefficients in the output polynomial require different numbers of computations. For
example, computing the coefficient of z? requires only three @ operations, while com-
puting the one for z3 requires four. Thus, different threads in a warp would perform
different numbers of operations, resulting in divergence.

The key to achieve load-balanced execution among the threads is to realize that
pairs of coefficients require exactly the same number of computations in total, as we

show below.

40

Denote by Add(k) and Mul(k) the number of @ and ® operations respectively to
compute the k' coefficient in the output polynomial. From Eq. 6.1 we derive that
Add(k) = min{k,2n — 2 — k}, Mul(k) = min{k + 1,2n — 2 — k + 1} = Add(k) + 1.
Therefore Add(k) and Mul(k) are symmetric around n — 1. Consequently, for each
0<k<n Add(k) 4+ Add(k +n) =n — 2, Mul(k) + Mul(k+n) =n

We conclude that the number of computations needed to compute both coefficients
k and k + n together is exactly the same for all k. Therefore, allocating such pairs
of coefficients to be computed by each thread will balance the load perfectly among
the threads. Note that computations always interleave bitwise @ and ©® operations;
therefore there is no divergence as long as the number of such operations in all threads
is the same.

In summary, our parallel polynomial multiplication algorithm allocates each thread
in a warp to compute one or more pairs of rows (k,k 4+ N) in the output chunk. Each
thread computes the coefficients of B polynomials at once, thanks to bit-slicing.

We illustrate the execution of the algorithm for GF (24) and W = 4 threads per

warp as an example in Figure 6.1.

Implementation The implementation closely follows the algorithm. We dedicate one
warp to compute 2V rows in the output chunk C. All the rows in the input are accessed
by all the threads, and therefore they are prefetched into shared memory. Figure 2 lists
the implementation for a single warp, assuming W =N=32. For clarity we split the
implementation into two separate loops (line 15 and 22), each computing one output
row. This leads to divergence in practice, so in the real implementation these two loops

are merged.

Limitations The algorithm achieves divergence-free execution when invoked for poly-
nomial multiplication in GF (2N) when N|W, i.e., 32, 64, 96. We leave the question of

efficient multiplication of polynomials of other degrees to future work.

6.3 Polynomial multiplication using register cache

In this section we apply the register cache methodology presented in Section 5.2 to speed
up ring multiplication (Listing 3) and compare it (here and later) to the less efficient
and simpler shared memory implementation (Listing 2). To describe the register cache
optimizations, we focus on a single warp performing multiplication of polynomials of
degree n=W =32. We then discuss the application of this method to polynomials of
higher degree.

We start with the shared memory implementation described in Section 6.2.2.

Step one: Identify warp inputs in shared memory Since each warp is dedicated

to the calculation of a single product of two chunks, each warp reads only its input

41

Listing 2 Multiplication of polynomials of degree 32 in a warp using shared memory.
1 __global__ void multiply_shmem(
int* A, B, C,
int N)

shared__ int sB[32];
int output=0;
int lindex = threadIdx.x & (WARP_SIZE - 1);

2
3
4
5 __shared__ int sA[32];
6
7
8

10 // PREFETCH

11 sA[lindex]=A[lindex];

12 sB[lindex]=B[lindex] ;

13 __syncthreads() ;

14

15 for (int i=0;i<=lindex;i++){
16 int a = sA[i];

17 int b = sB[lindex-il;

18 output "= a&b;

19 }

20 C[lindex]=output;

21 output=0;

22 for (int i=lindex+1;i<N;i++){
23 int a = sA[i];

24 int b = sB[N-1+lindex-i];
25 output "= a&b;

26

27 C[lindex+N]=output;

28 }

chunks.

Step two: Distribute inputs among warp threads The rows in chunks are
distributed in a round-robin fashion across the warp threads. For each of the two input
chunks, thread ¢ stores all the chunk rows ¢ such that £ =¢ mod w. Conveniently, since

W = n, thread ¢ stores rows A; and B; of the respective chunks.

Step three: Split the algorithm into communication and computation steps
Each thread communicates with the other threads to obtain the operands of each ®
operation. Therefore, each ® is a computation step that is preceded by a communication
step in which the operands are received. We refer to two such steps together as an
iteration, because they correspond to one iteration of the loops in lines 15 and 22 in
Listing 2.

We first determine the data accessed by each thread. We derive this from the
accesses to shared memory in lines 16-17 and 23-24 in Listing 2. Due to the round-robin
data distribution we use, and since the number of rows in each chunk equals the number
of threads, the indexes in shared memory coincide with the warp indexes of the threads
holding the data.

Now we derive which data must be published by each thread in each iteration.
Figure 6.1 is useful to reason about this. We see that the value of A;, stored in thread
1, is needed by all the threads only in iteration ¢, and hence each thread must publish it
in iteration 3.

B;, however, is read by different threads in different iterations. For example, By is

42

Listing 3 Multiplication of polynomials of degree 32 in a warp using the register cache.

1 __global__ void multiply_reg_cache(

2 int* A, B, C,

3 int N)

42 A

5 int a_cached, b_cached, output=0;

6 int lindex = threadIdx.x & (WARP_SIZE - 1);
7

8 // PREFETCH

9 a_cached=A[lindex];

10 b_cached=B[lindex] ;

11

12 for (int i = 0 ; i < N ; i++)

13 { //COMMUNICATE

14 int a = __shfl(cached_a,i);

15 int b = __shfl(cached_b,lindex-1i);
16 //COMPUTE

17 if (i <= lindex) output "= a&b;

18 }

19 C[lindex]=output;

20 output=0;

21 for (int i = 0; 1 < N ; i++){

22 int a = __shfl(cached_a,i);

23 int b = __shfl(cached_b,N-1+lindex-i);
24

25 if (i > lindex) output "= a&b;

26

27 C[lindex+N]=output;

28 }

used by thread 0 in the first iteration, thread 1 in the second, and so on. Thus, thread i
must publish B; in each iteration.

The computation in each iteration remains the same as in the shared memory version.

Replacing each communication step with shuffles To use shuffle(), we must
align each Read and Publish operations in each communication step. To simplify, we
consider the case in which we first align all accesses to B and then to A.

Aligning accesses to B is straightforward, because (1) each thread publishes its single
cached value and reads one value in every iteration, and (2) no two threads require two
different values at once from the same thread (which would result in a conflict).

The accesses to A cause a problem, because each thread publishes only in one
iteration, but reads in each iteration. The solution is to simply duplicate the Publish
operation to each iteration, even though it is redundant.

The complete algorithm is presented in Listing 3, side-by-side with the shared

memory implementation in Listing 2 for comparison.

6.4 Extending to polynomials of larger degrees

We now extend the register cache-based multiplication implementation described in the
previous section to polynomials of larger degrees. Doing so requires us to cope with the
challenge of limited register space.

The shared memory algorithm in Listing 2 can be extended to up to n = 1024 by

adding more warps, each using the same code structure. The register cache, however, is

43

applicable only within a single warp. Therefore such a simple extension does not work
for the optimized algorithm.

However, extending the register cache for higher degree polynomials is problematic
in other ways as well. Caching these large polynomials requires more register space.
Thus, at a certain threshold ng, high register pressure results in register spillage to global
memory, thereby rendering the register cache method described above inapplicable. We
found empirically that the threshold is ng = 64.

In order to efficiently multiply polynomials of degree n > 64, we develop a hybrid
solution that uses the efficient register cache-based implementation for multiplying
polynomials of lower degree. The idea is to use the lower-degree multiplication as a
building block for multiplying polynomials of higher degrees, at the expense of employing
shared memory.

The full description of this algorithm is omitted for lack of space. But we now
explain the main idea behind it, by showing how to multiply degree-64 polynomials
using multiplication of degree-32 polynomials as a building block.

Let a(x) = Y a;z® and b(x) = _ bz’ be two polynomials of degree 64 that we wish
to multiply. Denote the efficient procedure for multiplying two polynomials of degree
32 by mul1t32(). We can represent a(r) = ag(x) + 32a1(z), where ag(z) = Z?io At
and a1 = 216232 x'. Observe that ag and a; are two polynomials of degree at most 31.
Using the same representation for b(z), we obtain a(z) ® b(x) = (ap(z) + 23%a1(7)) ©
(bo(2) + 2701 (2)) =
mult32(agp(x), bo(x)) + 23?mult32(a;(z), bo(z)) +
32mult32(ag(x), b1 (z)) + 2%4mu1t32(a1(x), by (x)).

There are many possible implementations of this idea and those we are aware of use
shared memory. We choose to implement one such solution that uses two warps. The
first warp computes mult32(ag, bg) and mult32(ai,by), and the second one computes
mult32(ap,b;) and mult32(ai,b1). Since the input is reused across the warps, it is
stored in shared memory. In addition, each warp stores its output in shared memory, so
the two warps can combine the results of mult32(ag, b;) and mult32(aq,by).

We use the same principle to implement multiplication for polynomials of higher

degree.

6.4.1 Performance comparison of the different designs

We would like to compare the relative speedup offered by the hybrid algorithm over
the purely shared memory implementation, and over the implementation that uses the
register cache only. Comparing these three designs is possible only for n < 64 because,
as mentioned, register pressure in the register cache version results in register spillage.

In our implementation, the naive shared memory version runs in two warps. The
hybrid mult32-based implementation uses the mult32 function internally, and uses

shared memory to share input and intermediate outputs between warps. Finally, the

44

Listing 4 Ring multiplication of just of large degrees using ring multiplication of chunks
of degree 32 as a building block.

1 // Rounds up N to the smallest multiplication

2 // of 32 larger than or equals to N.

3 #define ROUNDED(N) ((((N)+31)/32)*32)

4

5 // Brief: Performs ring multiplication of chunks A and B.

6 // Input: A,B - Chunks of degree N stored using ROUNDED(N)

7 entries in shared memory each.

8 // B is stored right after A in shared memory.

°o // tempChunk - A chunk of degree 64, stored in shmem.

w0 // unique chunk for each warp.

1 // myIdzInGroup — The index of a thread within all threads
12 // that cooperate in the multiplication of A and B.

13 // myIdzInWarp - Index of the thread within its warp.

14 /S warpInGroup - Index of this thread’s warp within

15 // all warps that cooperate in the multiplciation of

w6 // chunks A and B.

17 // Output: Ring multiplication of A and B stored in chunk C.

18 template<unsigned int N>

19 __device__ inline void finiteFieldMultiply(

20 unsigned int A[ROUNDED(N)],

21 unsigned int B[ROUNDED(N)],

22 unsigned int C[2 * ROUNDED(N)],

23 unsigned int templ[64],

24 unsigned int myIdxInGroup,

25 unsigned int myIdxInWarp,

26 unsigned int warpInGroup)

27 {

28 for (unsigned int i = O ; i < ROUNDED(N)/32 ; ++i)

29 {

30 // Each warp multiplies two chunks of degree 32:

31 // 1) In A: entries (32*warpInGroup, ...,32*warpInGroup + 31)
32 // 2) In B: entries (32*%i,...,32%1 + 31)

33 // Output is written to tempChunk.

34 multiply32Ring(tempChunk, &A[32 * warpInGroupl, &B[32 * i]);
35

36 /7

37 C[32#*(i+warpInGroup) + myIdxInWarp] ~= tempChunk[myIdxInWarp];
38 __syncthreads();

39

40 // Then write the upper 32 entries to the shared memroy.

41 C[32*(i+warpInGroup) + myIdxInWarp + 32] “= tempChunk[myIdxInWarp + 32];
42 }

43}

optimized degree-64 multiplication uses register cache natively, without shared memory.
In this implementation each thread stores 4 input coefficients and produces 4 outputs.

The results of the comparison are presented in Table 6.1 and demonstrate the benefits
of using register cache. We observe that the shared memory (shmem) implementation
is about 3.5 times slower than the one using register cache (rcache). The hybrid version
(mult32) achieves 2.6 times faster execution over shmem, and about 30% slower than
the optimal rcache version.

These results also indicate that the best building block for the hybrid algorithm is
the multiplication kernel of the largest degree that fits in the register cache. Therefore,

we use n-64 polynomial multiplication and evaluate its performance in Section 8.

6.4.2 Application to larger fields

The shared memory based multiplication requires 16n bytes of shared memory. In
a GPU with up to 48KB of shared memory per 7B for full occupancy (as NVIDIA

45

Version | Throughput | Shared memory | Reg/Thread
(mult /s x10?) accesses
shmem 1.04 16384 25
mult32 2.7 512 30
rcache 3.6 0 32

Table 6.1: Performance of three different implementations of 64-degree polynomial
multiplication.

Titan-X), we are limited to fields of size < 23972, With the register cache we use half
the amount of shared memory, and therefore can implement multiplication in fields as
large as GF(26144).

However, we do not implement it for fields larger than GF (22048). For larger
fields the hybrid algorithm outlined here with asymptotic running time O(n?) becomes
relatively inefficient when compared to the more sophisticated Karatsuba algorithm, as

detailed in Section 8.

6.4.3 Using shared memory only for the output

We now present another optimization intended to reduce the amount of shared memory
allocated for a ring multiplication. Therefore, this optimization reduces the amount of
shared memory allocated to finite field multiplication as well. This optimization uses
the degree-32 ring multiplication of chunks based on register cache and does not work
when a degree-32 ring multiplication based on shared memory is used.

In the previous section we showed that to perform polynomial multiplication of
chunks of degree n using the degree 32 polynomial multiplication as a building block.
We have also stated there that the degree 32 polynomial multiplication can be performed
either by shared memory based multiplication or using the shared-memory free version
that is shuffle based. In both ways the presented implementation stores in shared
memory 2 chunks of degree n and an additional chunk of degree 2n that stores the
output of the multiplication which is in total % bytes of memory.

In this section we show how we reduce the amount of shared memory when using
the shuffle-based version of the degree 32 polynomials multiplication by half. We recall
that this version is shared memory free and utilizing the characteristic is crucial in the
improvement.

The multiplication will be in place, which means that the output of the multiplication
will be written straight into where the input was written in shared memory.

First, since the output is degree 2n chunk and we wish to write it exactly where the
input resided in the beginning of the algorithm we the chunks in shared memory that
store the inputs will be consecutive in the memory. This requirement is reasonable and
can be easily programmed, we will not discuss this requirement along the rest of the

algorithm and assume that chunk a is followed in memory by chunk b.

46

Recall the algorithm in listing 4 in which the used degree 32 polynomial multiplication
building block is the shuffle based one. In this algorithm each warp that participates
in the multiplication of two chunks stores, distributively, a chunk of degree 32. We
know that all entries in the input chunk a will be stored in one of these warps and we
know that after this single reading from a no additional reads will be done from A at
all along the algorithm. Therefore, we can use A to store the lower half of the output

(coefficients of 2°,..., 2" 1)

and B to store the upper half of the output. In the first
step of the iteration, we take the first 32 entries of b and load them distributively into
the registers of all warps. At this moment the first 32 entries of b will never be read
again. Therefore the first n 4+ 32 at this moment are free for output to be written to
them. At this point each warp multiplies its part of a by the first 32 entries of b that
are stored in its registers and the total output of all warps exactly fits into the first
n + 32 entries of the output, the result will still be written in two phases as described
in previous section, each warp with 64-degree polynomial it wants to add to the output
first adds the lower 32 entries of the output it stores to the correct entries in the shared
memory, then a barrier is applied and then the upper 32 entries each warp holds will be
added to the correct entries in the shared memory. The full implementation is given in
listing 5.

Notice that if we didn’t use the shuffle-based communication, we would be able
to write our result to ¢ without overriding entries from a subchunk of b that we still
need for the multiplication since we don’t store them in our registers. We can also
use this ring multiplication as a building block in the ring multiplication based finite
field multiplication as described in algorithm 6.1 to cut in half the shared memory

consumption of the finite field multiplication as well.

47

Listing 5 In-place ring multiplication of chunks.

1 // Rounds up N to the smallest multiplication

2 // of 32 larger than or equals to N.

3 #define ROUNDED(N) ((((N)+31)/32)*32)

4

5 // Brief: Performs ring multiplication of chunks A and B.
6 // Input: A,B - Chunks of degree N stored using ROUNDED (N)
T/ entries in shared memory each.

8 // B is stored right after A in shared memory.

o // myIdzInGroup - The index of a thread within all threads
w // that cooperate in the multiplication of A and B.
u // myIdzInWarp - Index of the thread within its warp.
12 // warpInGroup - Index of this thread’s warp within
3/ all warps that cooperate in the multiplciation of
14/ chunks A and B.

15 // Output: Result is stored as a chunk in the same memory
w6 // A and were stored in.

17 template<unsigned int N>

18 __device__ inline void finiteFieldMultiply(

19 unsigned int A[ROUNDED(N)],

20 unsigned int B[ROUNDED(N)],

21 unsigned int myIdxInGroup,

22 unsigned int myIdxInWarp,

23 unsigned int warpInGroup)

24 {

25 unsigned int my_a;

26 unsigned int my_b;

27 unsigned int my_c[2];

28

29 // READ step: Each warp reads coefficients

30 /7 (warpInGroup * 32,..., warpInGroup * 32 + 31)
31 /7 into registers.

32 my_a = A[warpInGroup * 32 + myIdxInWarp];

33

34 // All entries of A are stored in registers, we nullify

35 // the shared memory in which A was stored.

36 AlwarpInGroup * 32 + myIdxInWarp] = 0;

37

38 for (unsigned int i = O ; i < ROUNDED(N)/32 ; ++i)

39 {

40 for (unsigned int j = 0 ; j < 4 ; ++j)

41 {

42 my_c[i] = 0;

43

44

45 // READ step - Reading coefficients (32%%,...,32%1 + 31).
46 my_b= B[32*i + myIdxInWarp];

a7 __syncthreads();

48

49 // First warp nullifies the entries of B that

50 // were read in this iteration.

51 // They will now be used to store the output.

52 if (warpInGroup == 0)

53 {

54 B[32*i + myIdxInWarp] = O;

55

56 __syncthreads();

57

58 // Each warp multiplies to chunks of degree 32 it stores.
59 // Output is stored in my_c.

60 // Multiplication s shuffle based.

61 multiply32Shuffle(my_c, my_a, my_b);

62

63 // Each warp distributively stores in my_c a chunk

64 // of degree 64.

65 // To avoid write access collisions, first add

66 // lower 32 entries to the result in shared

67 // in shared memory and syncrhonize.

68 A[32*(i+warpInGroup) + myIdxInWarp] "= my_c[0];

69 __syncthreads();

70

71 // Then write the upper 32 entries to the shared memroy.
72 A[32*%(i+warpInGroup) + myIdxInWarp + 32] "= my_c[1];
73 }

4}

48

Technion - Computer Science Department - M.Sc. Thesis MSC-2016-15 - 2016

Chapter 7

Implementation of the FFT
algorithm on GPU

In this section we will depict in detail an efficient parallel implementation of algorithm 3.5
on the GPU architecture. First, we introduce the general outline of the implementation
and the main phases that compose it, then we will elaborate the implementation of

each phase separately.

7.1 Outline of the Implementation

Algorithm 3.5 is recursive. Unfortunately, recursion would have severely impaired the
implementation’s performance. Instead the algorithm’s implementation begin with
a series of d splitting iterations within a loop. At the first iteration the input is a
polynomial g where 2¢ < deg(g) < 29! represented as a sequence of 2%1 chunks with
k" element in the series of chunks is a finite field element that represents g,_; - the
coefficient of 2! in g. In figure 7.1 an array of chunks G is presented. At its first

entry, elements go, ..., gs_1 reside. At the second entry gz, ..., ga5-1 and so on.

G
G[O] o | & | o |85

G[l] s |&pa| |828

241
[T e o

Figure 7.1: Storage of Coefficients of Input FFT Polynomial in Chunks

We will denote the input polynomial g as goo which along the first iteration will be
processed as described in algorithm 3.5 and will be detailed in this section. At the end

of algorithm 3.5 the polynomial is split into two polynomial on which FFT is computed

49

recursively. In our implementation, at the end of the iteration the polynomial is split
into two polynomials g1, g1,1 where 241 < deg(g1,i) < 2¢ and FFT is evaluated on
both of them over the same subspace as described in algorithn 3.5. Those evaluations
will be in parallel.

The next iterations are implemented in the same manner, the input to the i*” iteration
will be a series of polynomials g; o, ..., g;2:_; where 24-1 < deg(g; ;) < 2%~ 'that are
represented as an array of 2%1 chunks. The polynomials will be stored in the same
array of chunks, such that the first 2¢="*1 elements in will represent the first polynomial,
the following 2¢~*! will represent the second polynomial and so on. The GPU will

process in parallel g; o, ..., g;2i_1 as described in 3.5 in 3 steps,

1. Shift phase (Algorithm 3.5, step 2) in which we take the polynomial g; j(x) and a

basis element and calculate the new polynomial s; ;(z) = g; ;(Bx).

2. Taylor Expansion Phase (Algorithm 3.5, step 3) the which we calculate the Taylor
Expansion of the polynomial at (ac2 — x) The output to this phase is in the same
structure as the input, composed of pairs of elements where the k* pair is the
linear function a; jx + b; j x - * which is the coefficient of (x2 — :c)Z in the calculated
Taylor Expansion and s; ; = 2:01_1 (g + Bijk-x)- (:132 — x)z

3. Shuffle Phase (Algorithm 3.5, step 4) in which we take the Taylor Expansion
calculated in the previous step and calculate from it the two new polynomials
9i+1,2j, 9i+1,2j+1 by performing the shuffle permutation on the input, taking all
evenly indexed elements (i.e. all a; ;) and putting them, in order, at the first half
of the output so they will represent the polynomial g;11,2; and the oddly indexed
element (i.e. all b; ;1) and putting them, in order, at the second half of the output

so they will represent the polynomial g;112;1.

At the end of the iteration, from each polynomial g;; two new polynomials are
created,g;11,2; and gi+1,2j+1. These polynomials will be part of the input of the next
iteration.

At the end of all iterations we have 27 linear functions (i.e polynomials of degree at
most 1). gq.0,---, 9q,24-1, then we will perform in parallel the linear evaluation phase
(Algorithm 3.5, step 1) for gq ;. This evaluation will give an output denoted by eq ; the
evaluation of linear function gq ; over a subspace with two elements {0, u} where eq ; is
represented as two elements. First the evaluation of the linear function over 0 and the
over u. The output of the whole phase is represented with 2%1 chunks composed as the
concatenation of all evaluations.

Now we will iteratively ”fold” the recursion, with another loop of d merge iterations,
the input to each iteration is a series of evaluations e;,...,€; 1 which are the
evaluations of g;p,...g;9i_; and in parallel for each consecutive pair of evaluations

€i2j, €i,2j+1 wes will calculate e;_1 ; in the merge phase (Algorithm 3.5, step 10).

50

8o0
Split #0 { ’ 2
8o 8
Split #1 {—% ;—%
820 81 8a2 813
g d 0 s g d .1 > ’ g d.29_1
Linear Evaluation l
€s0 o €41 > s €4y
€0 € € €3
Merge #d-1 H—J %—J
€ €,
C J
Merge #d ¥
€0

Figure 7.2: Outline of the FFT Algorithm

In figure 7.2 an outline of the algorithm as described above is presented, the flow
of the algorithm is described in figure from the top to the bottom and in figure 7.3 a

single split iteration is depicted.

& (x)
Shift Phase i
5, (x)
Taylor Expansion Phase H
%ol Byl @iga| Bijs cee Ay | By
U C J
Shuffle Phase H
A { A
ai,j,O ai,./‘,l e ai,/,z”bl ﬂi,i,O ﬂi./‘,l oo ﬁ[,/‘,2”'—1
A 4 A
gi+l,2/ gi+l,2j+l

Figure 7.3: Outline of a Single Split Iteration

Along the algorithm there are many uses of affine subspaces composed of subspaces
B and G and affine shifts sp and s¢ (using the notation from 3.5). The shifts and the

elements spanning the subspaces will be kept in a designated array and since they are

51

not a function of the input polynomial they will be pre-calculated, assuming the affine
space is known beforehand. We will also maintain for each subspace an array of chunks
such that the %" finite field element in the array of some subspace B is Bli].

Notice that also D and sp are used, but only as inputs to the recursive calls so each
D and sp are in turn the B and sp of the next recursive step.

In the following sections we will depict the details of implementation of each phase.

7.2 Set Up for GPU

At the beginning the algorithm gets as input an array of finite field elements. As
previously stated, assume that each finite field element e = Z?;Ol a;z’ in GF(2") is
represented as an array of 7/s bytes where j bit in i** entry represents agi4j-

Our goal in the setup phase is to change the representation of the given polynomial
into an array of chunks. The kernel that does that assigns a warp for each B elements
in the input polynomial. So warp i will be responsible for grouping elements B - i to
B-(i+ 1) — 1 into a single chunk . Thread of index j in warp ¢ will be responsible for
writing rows j,j + W, ... of that chunk.

First, in order for the GPU to be able to process the given array, we copy the whole
polynomial into the GPU.

The algorithm is quite simple, at the beginning thread ¢ in the warp will copy element
t,t+ W, ... from the elements which its warp is responsible for into the shared memory
into a designated array. After that thread ¢ extracts the i*? bit from all elements, writing
the i** bit of the j** element into the j** bit of the i** row of the output answer, for
i=t,t+W,... and j=0,1,....B—1.

After the algorithm is done, we remove original polynomial from GPU as we won’t
need it anymore and we will copy to the GPU memory the arrays of chunks for each

subspace used along the algorithm as described above.

7.3 Shift Phase

In this phase we are given as input an array of finite field elements stored in chunks,
representing a series of 2¢ polynomials g, ..., g of degree at most 24 _ 1. At the
beginning of the algorithm, ¢ = 0 hence we have a single polynomial, at each recursive
call each polynomial is split into two polynomials as described in the shuffle phase
(section 7.5).

2d

For each polynomial g; j(z) = 37 o*

a;x' we have to calculate s; j(z) = g¢;(Bmx)
where 3, is an element spanning affine subspace B over which we evaluate g; j(x). By
calculating g(f,,) we mean having in memory the polynomial g; ; (Bmx) represented

in chunks, so the i*" finite field element will represent the coefficient of z* of that

52

polynomial. Notice that,

241 291
st = 90j(Bme) = Y ai(Bmx)' = Y Bhai’
i=0 i=0

The new coefficient of 2 is a; - 52, so our algorithm will multiply the i** coefficient by
Bi.. As B, is known beforehand and is independent of the input polynomial, we will
precompute an array of chunks A of length max (1, |2*/8]) with 2¢ finite field elements
such that the ' finite field element stored there will be 3¢, .

If 2¢ < B then this array will be composed of a single chunk and the i** coefficient
(i.e. B%) will be element i,i + 2%, For example if B = 32 and 2¢ = 8 then ag will be
in elements 0, 8,16, 24 of the chunk and a5 will be in elements 5,13, 21,29 of the chunk.
In the algorithm it self each warp number i is responsible for multiplying chunk B[i] by

chunk A[i mod 2¢] using the GPU implementation of algorithm 6.1 given at chapter 6.

7.4 Taylor Expansion Phase

In this phase we get as input an array of chunks B representing 2! polynomials
54,05+ -+, 8¢2t—1 of degree < 24 each (d > 2). The goal of this phase is to calculate

the Taylor Expansion at (x2 — ac) of each of the given polynomials using Algorithm

3.4. That is, we would like to find linear functions h; jo(x),...,h; joi-1_4 such that
9d—1_1 9 k b
sig () = Limo high(@) - (@2 —2)" and hyjp(@) = qijp+ Bijp - o

The format of the requested output is a sequence of pairs «; j, i jk, in chunks,
ordered by k. The first B elements will be in the first chunk, the next B elements will
be in the second chunk and so on.

The Taylor Expansion algorithm is implemented as follows. Given a polynomial

gi,j(x) of degree < 24 write it as
p(a) = to(@) + 2> " ty(@) + 22 ta(x) + 23 Tts(x) | deg(pi) < 2972 (7.1)
So,

T(p,2) = (T (to+ (b +t2 +15) 2%, 2070) T (12 +) + 13- 2%, 2071))

(7.2)
Figure 7.4 demonstrates how #g,%1,t2 and t3 compose s; ;j(x) and how the Taylor
’-]
Expansion is calculated. First, we add for each k the k*" element in 3 to the k** element

in t5. Then, we add the k" element in the sum of to + t3 to the k" element in t;. We
split the elements into two halves and calculate iteratively and in parallel the same
algorithm on both halves as long as each contains at least 4 elements. We will now get
into the deep details of what each thread performs along the algorithm.

The algorithm is performed in three different kernels, to deal with the following

three situations that come up along the algorithm, in any of which the amount of data

53

A, J
N
!
Ly A I, +1, t3
.)
V
ly [+t +1, I, +1, 13
(J (J
¥ ¥
Taylor Expansion Taylor Expansion

Figure 7.4: Outline of the Taylor Expansion Algorithm

each warp has to process is different but all implement the same basic idea presented

above.

1. The first kernel will assume that 2/8 > 4, so each p;(x) is represented using
at least 4 chunks. The kernel is repeated until the polynomials don’t meet the
criterion stated above. Iteratively each polynomial takes ¢ = 2?/B chunks and ¢/4
warps will be processing it. Each polynomial p(x) in each iteration will be written
as in Equation 7.1 so tg is represented using the first ¢/4 chunks, the next ¢/4
chunks represent ¢; and so on. Warp number ¢ among all warps that process that
same polynomial p(z) will take the i chunk representing t3,ts and t1, denoted
by D[i],C[i] and Bli] respectively and thread j will perform for all k € R;

(a) Clilg < Clilx ® Dli]. (to < to +t3)
(b) Bli] < Bli] ® Clilg. (t1 < t1 +12)

2. The second kernel assumes that 2//8 = 2, so in this case p;(x) is represented
by exactly two chunks A, that stores tg and t; and B, that stores to and t3 as
described in Equation 7.1. The kernel is invoked once and the output of it are
polynomials that are represented using exactly one chunk. Each thread j will

perform for all rows number k € R; the following,

(a) Add (Xor) the most significant B/2 bits of By into the least significant 5/2
bits of By.

54

(b) Add (Xor) the least significant B/2 bits of By into the most significant B/2
bits of Ap.

3. The third kernel assumes that 2?/8 < 1, so in this case p;(x) is represented in a
single chunk A that stores 2P polynomials, one of them is p;(z). In this case for
each chunk will be processed by a single warp. The kernel is invoked repeatedly
until the polynomials are of degree 2. Each thread j will perform for all rows

number k € R; the following,

(a) Add (Xor) the bits that represent ¢3 of all polynomials within the chunk with
the bits that represent the t5 of the same polynomial.

(b) Add (Xor) the bits that represent t9 of all polynomials within the chunk with

the bits that represent the ¢; of the same polynomial.
These operations can be done efficiently with simple bit-wise operations.

Once all executions of the third kernel are done, the phase is finished and the output

is given as described above.

7.5 Shuffle Phase

On this phase we are given as input the output of previous phase,

Q0,0 Bt,0,0 Q0,1 Bro1 .- Qupod_g Bro,24-1
Q1,0 Bt,1,0 Q1,1 Bt e Q1,241 5t,1,2d—1
A 2t—10 Bt,zt—u) Qpot_11 5t,2t—1,1 cee Qot_q9d_q 5t,2t—1,2d—1

Where each line represents the Taylor-Expansion of one polynomial. The output of this

phase is g¢+1.2i(z) and gi+1,2i41 for each polynomial g:;(z) , define as,

d_) d_)
grrr2i(r) =300 gty grgi(z) =300 Briga?

So in each polynomial p;(z) in this phase we will move the «;; to the first half of

elements and the f3; ; to the last. The expected output is the following,

0,0 @1 .- Q2d_1 Boo Boi - Bogig
Q1,0 Qa1 e Qp9d_q Bio Bia T 51,2‘1*1
OéQt,l’O O[2t,171 e Oé2t — 17 2d —1 52’5*1,0 ,82t,1’1 e ,82t71’2d,1

In other words, we perform a permutation on each line taking all even indexed elements

to the first half with respect to their original order and taking all odd indexed elements

55

to the second half with respect to their original order as well. This permutation
mq 2971 — [2971] is defined as follows,

ma(i) = {

To permute these elements which reside inside chunks, we will perform the permu-

1 is even

N Nl

d 4 % otherwise

tation for all rows (polynomials) in parallel. (e.g. to move the second element in the
third chunk to the fourth element in the second chunk we have to move the second bit
in all rows of the third chunk to the fourth bit of all rows of the second chunk). At
first thought, the easiest and fastest algorithm to perform this permutation is allocating
more memory space and copying, in parallel, element i to its index 74(7) in the allocated
array. However, this turns out to be a bad solution in the given representation with

chunks because of two main reasons,

1. Processing each bit of each element separately will ignore the ability of each thread

to process B bits at the same time, impairing the performance.

2. Each row of each chunk at the output is affected by several different rows and
chunks in the input. The same holds for each row of each chunk of the input,
affecting several rows and chunks at the output. If different threads will process
different rows and chunks concurrently, means of synchronization will have to be

considered, this will impair the performance as well.
The algorithm we suggest is based on the following three sub-phases,

1. Let 09,04,0s...085 be the following permutations over [B],
2

i—% L%JEQ(mod 4)
oq(i)=19 i+% [Z|=1(mod4)
) otherwise

As shown in figure 7.5 the permutation o4 is applied on the elements of the chunk
denoted by A by partitioning the chunk into parts of 2d elements. Each part is
then partitioned into 4 sections. The permutation exchanges the elements in the

second and third sections of each part.

Let us now explain what each permutation does. Assume 2%t! > B and let
elements g, Bo, - - ., sj,—1, B5/,—1 be some elements in the same chunk, which
belong to the same polynomial. Our goal in the first part is to permute the
elements within the chunk to achieve the order, ap, ..., asp,_1, B0, - -, B85—1. The
computation will be done in several steps, at the beginning of each step we assume
the input is as follows,

Ay, By, A1, Bq,. ..,

56

A A A A .o

0 0.5d-1 0.5d d-1 d 1.5d-1 | 415d 2d-1
A,... A AL A A%, A A, A

v v Y v
0 0.5d-1 d 1.5d-1 0.5d d-1 | 415d 2d-1
A,.. ., A A%, . A A LA A, LA

Figure 7.5: Applying Permutation o4 on a Chunks’ Elements
Where A; and B; are blocks of ¢ alphas and betas respectively such that

Ai = gy -+ o5 Qg 1).g—1

Bi = Biqy- - Bli+1)-q—1
After applying permutation o9, the blocks” order will be Ay, A1, By, B1, A2, As,
Applying permutation o4, the blocks” order will be Ay, ..., A3, By,..., B3, A4,....
At the beginning each block will be composed of exactly one element, after
repetitively applying permutations 09,04, ... we will get the output as requested

above.

The implementation of o; can be done using bitwise operations. The following
code is a possible implementation of the permutation in C programming language
on the bits of row ¢ of chunk C.
q—bits 3q—Dbits q—Dbits 3g—Dbits
N NN NS NN
d=11...100...011...100...0...

B bits
Clil=(C[i]l&d) | (C[il&(d>>3q)) | ((CL[il&(d>>2qg))<<q) | ((C[il&(d>>q))>>q)

If 29+ < B only permutations oo, ..., 041, and the next sub-phases will not be

executed at all.

Figure 7.6 gives an example for the flow of this phase for a single chunk when
B = 16. The phase is composed of three steps, in which we apply permutations
02,04 and og consecutively to achieve the goal of this phase - having all o; elements
kept in order in the first half of the chunk and all 5; elements ordered in the

second half.

. On the second sub-phase we assume that 2d+1 > 91 s0 each row in the input
matrix of the shuffle phase is represented using at least two chunks. After the first

sub-phase each chunk contents B/2 alpha elements followed by B/2 beta elements.

o7

| Bo| | Bl | By| os| Bs| ey Ba| &s| Bs| | Bs | &4| B

4 Y Y . Y Y

ag\ o\, || Bo| B By | Bs| | as | ag| s | Ba| Bs| B | B

ay o |, || a,|as|ag|a; | By | B\ By | B | Ba| Bs| Bs | B

Figure 7.6: Applying Permutation 7g on a Chunks’ Elements

In this sub-phase we wish to change each to consecutive chunks such that the first
chunk will contain the alpha elements of both chunks and the second chunk will
contain the beta elements from both chunks. The implementation can be done
as follows. For each pair of two chunks A and B we will launch a single warp.
Thread j in that warp will perform for each row i € R; a swap between the 5/2
MSBs of A; LSBs of B;. Performing this swap, in parallel on all rows of chunks A
and B will give the requested output.

. On the third sub-phase we assume that 2%t1 > 2 so each row in the input matrix
spanned over at least 4 chunks. Otherwise, this sub-phase is not performed. At
the end of previous sub-phase it is assured that the input to this sub-phase is a
series of chunks Ao, Bo, A1, By, ... such that A; contains a;g, ..., a;11)p—1 and
B; contains elements B, ..., B+1)8-1- On this phase we will allocate a new
array that will be the output array of the same length as the input array. The
it" chunk of the j"* row of the matrix after sub-phase 2 will be copies the s4(7)

chunk of the j* row at the output array.

7.6 Linear Evaluation Phase

In this phase we have as input many linear functions represented within chunks. Each

chunk C' will contain a series of pairs of elements o j o, Bt j,0 that represent the linear

function hy j(z) = oy jo + Bt jox. In this phase we will evaluate each g ; over the affine

subspace of two elements, s, s + b.

The requested output is replacing each a; with hy j(s) and each §; with hy (s + b)

to obtain e; ; evaluation of h; ;j over the affine subspace s, s 4 b. In this phase each warp

will perform two finite field multiplications of chunks. The first will multiply an input

58

chunk C' by a chunk containing the elements 0, s,0, 5,0, s, ... this will multiply each j;
by s, adding the result to «; will give h;(x). The second finite field multiplication of
chunks will multiply the input chunk by 0,b,0,5,0,8b,.... This will multiply each g; by
b. Adding h;(s) that has already been calculated to 3; - b will give us h;(s +b), that will

finish the calculation in this phase.

In figure 7.7 the flow of the linear evaluation phase over a single chunk is presented
where B = 16.

LSB MSB
aO ﬂO al ﬁl a2 ﬂZ CX?) 183 a4 ﬂ4 aS ﬂS a6 ﬂé a7 ﬁ7
(Field Chunk Multiplication) .
olslols|ols|lols|ols|o]|s|o]|s|O]s
1{oj1{o|1(Of1]O0]1|Of1]|O]|1]|]O|T1]O
N >(Field Chunk Multiplication*)
y
<>< (éhift-Riéht bi e’
Y
o, +s- B, 0 o, +s-f, 0
|)
0O|b|O0|H|O0O|H|O0O|H|O|HL|O|H|O|b]|O]|b
Y
- »(Ficld Chunk Multiplication)
p Shift-Left by T)e—
VAAY)
A\

>
Bl

ay+s-Bylay+(s+b)By| <0 | ay+s-fra, +(s+D)f,

Figure 7.7: Linear Evaluation Phase Applied Over a Single Chunk

7.7 Merge Phase

The input of this phase are 2 evaluations e;110, . . . ,€441,2t—1 of some polynomials over
the same affine subspace S = sp + D in this phase we will take each pair of evaluations
et+1,25 and e;41,2j41 and treat them as the evaluations of some polynomials g;12; (x)
and g¢y1,2j41(x) respectively as described in Algorithm 3.5 where each e;1;2; and
ei+1,2j+1 are the U and V (as in algorithm 3.5) of some FFT invocation, respectively.
The evaluations are kept in memory in an array of chunks. The i element in each
evaluation e;1; is g¢41,j (sp + D]i]) where e;41; is the corresponding evaluation of
gt+1,5(x) over the affine subspace sp + D.

In this phase, as described in Algorithm 3.5, we will take each pair of e;112; and
et+1,2j+1 With evaluations ug, . .., ug9a_1 and vg, ..., v9a_;. These will be used to compute

for the polynomial g; ; the evaluation of it, wo, . .., wgd+1_; such that for each 0 < i < 24,

w; < u; + (sp + DIi]) - v;
Wad 1 — Wy + V;

Assuming we know beforehand the subspace of the FFT we will keep in memory for
each affine subspace sp + D for each merge iteration (as described in section 7.1) of the
algorithm an array of all elements in that subspace, in order. One of the following cases

will happen in each level of recursion,

1. The number of elements in the subspace is bigger than or equals to B (number of
elements that can be stored in a single chunk). In that case, the elements will be

kept in an array of chunks.

2. The number of elements in the subspace is smaller than B. In that case, a single
chunk will be allocated for the storage of elements in the subspace. Let 2¢ be the
number of elements in that subspace, then the chunk will be filled such that each
group of consequent 2¢+1 elements will contain first 2¢ zero-elements and then 2¢

subspace elements. The reason for this storage will be explained next.

The implementation of this phase will be taking all elements in e;11 2541 multiplying
them by the elements in the affine subspace sp + D which we already have in memory
in multi-point fashion such that the v; will be multiplied by sp + DJi]. The output will
be added to the corresponding u; in e;41,2;. The result after the addition will be added
to v; in ey41,2j41 to obtain ey ;.

To do this a single warp will be launched for each chunk in which elements of
€t41,2j+1 exist.

In the case in which a subspace has e < B each chunk in our input has both e;y1 2;
elements and e;41,2j41. Therefore, elements we will keep all elements of the subspace in
a single chunk in the following way. The first 2e elements will be e zero field-elements

and e elements will be the elements of the subspace. The next 2e elements will be the

60

same and so on. Now, after multiplication of each chunk of evaluations by that chunk
the result will be first right-shifted e times. As for each v; that was multiplied by some
subspace element, the results should be added to u; that resides in this case in the same
chunk e elements before v;. Notice that after the addition each v; not be changed since

all u; elements were multiplied by zero.

61

62

Technion - Computer Science Department - M.Sc. Thesis MSC-2016-15 - 2016

Chapter 8

Performance

In this chapter we will present the performance of various implementations for the FFT,
inverse FFT and finite field multiplication algorithm.

The source code of the finite field multiplication is available online '. We incorporate
the algorithms in Section 6.3 into the finite field multiplication implementation according
to Algorithm 6.1.

Methodology We use GeForce® GTX TITAN-X GPU, and a Supermicro Server
with 2x6 Intel® Xeon® E5-2620 v2 @ 2.10GHz CPUs with 64GB of RAM. For each
measurement we perform five executions, remove the highest and lowest results, and
compute the average of the remaining three. We observe negligible standard deviation,
less than < 4%. Hyperthreading and CPU power management are disabled to achieve
reproducible CPU performance. Each experiment uses random data for its input. As a
CPU baseline we use NTL version 8.1.2 [V. 03], which is a highly-optimized single-core
CPU library for finite field arithmetics that uses CLMUL CPU intrinsics for polynomial

multiplication.

Speedup over CPU for GF(232) and GF(264) Our implementation for GF(232)
and GF (264) employs optimized register cache implementations of n=32 and n=64 poly-
nomial multiplication respectively. We emphasize that we apply the same optimizations
the NTL does when 2-gapped polynomials are used, and that the NTL implementation
is based on the CLMUL instruction.

Figure 8.1 shows the results. The GPU implementations for GF (264) and GF (232)
are up to 99 x and 138 x faster than NTL’s CPU multiplication for inputs exceeding
226 clements.

We observe that the speedups are not constant. The reason lies in the variability
in the NTL performance, which drops by about 15% for larger inputs. The GPU
implementation performance keeps rising until it plateaus out for inputs exceeding 22°

elements.

"https://github.com/HamilM/GpuBinFieldMult

63

https://github.com/HamilM/GpuBinFieldMult

The peak throughputs of GPU implementations are 3.15 and 2.09 billion finite
field multiplications per second for GF(232) and GF (264) respectively. Note that these
throughputs are slightly lower than the throughput of the respective polynomial multi-

plication, because finite field multiplication involves multiple polynomial multiplications.

Register cache vs. shared memory We compare two implementations for multi-
plication in GF (264): with shared memory and with register cache. This experiment
seeks to evaluate the impact of our register cache optimization on the end-to-end appli-
cation performance. We observe that the register cache version is 50% faster than the
shared memory version. As expected, the performance boost is smaller than in the pure

polynomial multiplication case reported in Table 6.1.

T T T T
120 | N
=
”§ 80| N
2
w40 i
0, |

210 212 214 216 218 220 222 224 226 228
Number of multiplications
—o—GF(2%) = GF(2%)

Figure 8.1: Speedup of register cache multiplication in GF (264) and GF (232) over NTL

Performance for larger fields We evaluate the performance of the finite field
multiplication in fields of higher degrees. Here we incorporate our hybrid implementation
for polynomial multiplication described in Section 6.4, using the n=32 polynomial
multiplication as its building block. We measure the performance for fields from
GF(232) to GF (22048). We use 223 elements per input.

Figure 8.2 shows the speedup of our implementation over NTL. We achieve significant
speedups for smaller fields, but when fields grow larger our speedup diminishes (to
2.17x in GF(22048)). The reasons are found in the NTL implementation. For fields
smaller than GF (264), NTL uses the CLMUL intrisics, which allow only multiplication
of n=64 degree polynomials; the implementation is therefore inefficient for these fields.
Our GPU implementation does not suffer from this limitation. However, for larger
fields NTL uses a different hybrid algorithm (Karatsuba), which is asymptotically faster
than the quadratic algorithm we use. The problem of implementing the Karatsuba
algorithm on GPUs is in the difficulty to balance the load across threads. We leave the

implementation of a GPU Karatsuba for future work.

Performance for other fields Figure 8.3 shows the performance of our GPU im-

plementation for GF(ZN) where N # 2. As expected, we observe the step function,

64

=100 |
.S
g
g 50
n

0 b L | | ——

932 964 9128 9256 9512 91024 92048
Field size
—e— Register cache —— Shared Memory
Figure 8.2: Speedup over NTL for varying field sizes

E 15
<] [
E 10
g

0 = | | | | | | | | | | | | | | | | | |

264 2128 2192 2256 2320 2384
Field Size

—e— Register cache —#— Shared Memory ‘

Figure 8.3: Finite field multiplication performance for GF (2N) where NV is not a power
of 2.

where in each step the inputs are processed by the same number of warps. The number

of warps in our implementation employed in GF (2N) is [6%].

Considering alternative CPU implementations In all our experiments we use
a single-threaded NTL implementation for CPU as the performance baseline. NTL
natively supports multiplication of a single pair of elements and uses CLMUL instruction.
One could argue, however, that extending NTL to support multiplication of many pairs
in a batch, as we do in GPUs, might open additional optimization opportunities, e.g.,
bit-slicing techniques like those proposed in Section 6.2. Thus, it would become possible
to use the AVX vector instruction set instead of CLMUL, potentially improving NTL
performance.

We now show why CLMUL implementation is superior. In the AVX instruction
set [Fogl6] a single 512-bits wide AND and XOR takes 1 cycle each. Therefore, using
our bit-slicing algorithm, we can multiply 512 pairs of polynomials of degree 64 in
2 x (642) = 8192 cycles. Note that this estimate is rather optimistic, as we ignore the
time to reorganize the input bits to allow vectorized execution. On the other hand,
each CLMUL instruction multiplies a single pair of polynomials of degree 64 in 3.5
cycles (latency 7 cycle, throughput=2) [Fogl6]. Therefore, 512 polynomials can be
multiplied in 3.5 x 512 = 1792 cycles alone, much faster then the bit-sliced AVX-based

implementation.

65

3
T T 11T 1T T T T T T T 10 +GPU+CPU

102
10!
10°

Speedup

107!
1072

-3
07\\\\\\\\\\\\\\\\\\\\7 10 e A |

210 216 222 228 210 216 222 228
FFT Subspace Size FFT Subspace Size

(a) Speedup of the GPU FFT implementa- (b) Time to compute the FFT as a function
tion over the CPU FFT implementation as of the subspace size
a function of the subspace size

Figure 8.4: Comparison of GPU and a single threaded CPU implementation for FFT

T T 11T 1T T T T T T T 103

g —o— GPU-=-CPU E
102 8 £
10t | E
= E E
g 100 | E
<5 = B
Q‘ - -
z 1071 E
3L]
O v 10 ET 1 1 11111 g
210 216 222 228 210 216 222 228
Inverse FFT subspace size Inverse FF'T subspace size
(a) Speedup of the GPU inverse FFT im- (b) Time to compute the inverse FFT as a
plementation over the CPU inverse FFT function of the subspace size
implementation as a function of the sub-
space size

Figure 8.5: Comparison of GPU and a single threaded CPU implementation for inverse
FFT

8.1 FFT and Inverse FFT

In this section we will present the performance of our GPU implementation for the FFT

and inverse FFT over multiple affine subspace dimensions.

Figures 8.4 and 8.5 present the runtime and the speedup of the GPU implementation

over the serial CPU implementation for FFT and inverse FFT respectively.

Due to the symmetry of the algorithms, both figure portray the same picture. In

66

both algorithms the GPU implementation achieved a speedup of 16. In the TITAN-X
architecture the GPU implementation achieves a maximal subspace size of 22 and is
limited by the global memory size of 12 GBs. For the maximal input size of 229 the
GPU achieves a running time of 37 seconds for both FFT and inverse FFT.

67

68

Technion - Computer Science Department - M.Sc. Thesis MSC-2016-15 - 2016

Chapter 9

Conclusion and Open Questions

9.1 Conclusions

GPU Scales GPGPU programming with cuda gives more power to the programmer
in memory hierarchy management. This manual management of registers and shared
memory can prevent some phenomena on CPU that may cause lack of scalability like
false sharing or excessive cache miss rates. However, with great power comes great
responsibility as one has to take many considerations and restrictions into account when
manually managing his memory hierarchies and this management can be a quite a

burden to the programmer.

Utilizing CPU and GPU Instruction-Set To achieve high performance and
throughputs, applications should use the state of the art SIMD instructions in the
instruction set and not be restricted to old, classical instructions. The key to the
high performance of the CPU implementation of finite field multiplication is the use
of the PCLMUL instruction. Particularly the SSE instruction sets make CPU SIMD

programming simpler and very efficient.

Warp Locallity in GPU The register cache method presented in chapter 5.2 can
be used in a wide variety of applications as discussed in chapter 1 to achieve a modular
and scalable primitive for intra-warp communication. This method can accelerate
computations which are warp-centric, i.e - the computation can be broken into somewhat
larger parts in which each warp in independent. Several uses for this method are given
in chapter 5.2. In chapter 6 we presented the main use of this method in this work -
accelerating finite field multiplication in binary fields. With this method being applied,
additional throughput of 50% is measured.

69

9.2 Some open questions

Is Gao and Matteer’s Algorithm Inherently unscalable? In section 3.2 we
presented an additive FFT algorithm for affine subspaces over finite fields, originally
published by Gao and Matteer [S. 10] with a little addition making it compatible for
affine subspaces as well. In section 4.2 we presented an implementation of this algorithm
in CPU architecture and the performance of this implementation as discussed in section
8 point that this implementation does not scale because of high cache miss-rate along
with high NUMA traffic. Is implementing this algorithm on CPU is possible in a
scalable manner? Can one avoid the excessive miss-rates? If not, what properties of the

algorithm or CPU architecture cause it?

Can the GPU Hardware Support a Warp-Level Cache? In chapter 5.2 the
model of register-cache method is presented. This model behaves as a virtual warp-level
cache, in term that each thread reads several values from the shared/global memory,
stores them in registers, and shares them using shuffle with any threads wishes to access
to these values, by that reducing shared/global-memory traffic. This cache is not only
manually configured but is also not an inherent part of a large set of computations, as
shown in chapters 1 and 5.2. We raise a question whether it is possible that the GPU
architecture will support a such warp-level cache as parts of its hardware and whether

this level of cache is manually managed by the user or automatically by the GPU.

Can the register cache application can be automatized? In chapter 5.2 we
present the model of the register-cache method alongside a sime use-case of it. The
programmer in our case should be always aware of the usage of register cache when
reading and writing to memory. Implementing an automatic tool that in compilation-
time can substitute memory-accesses with the corresponding shuffles to achieve register
cache will relieve the programmer of this burden and perhaps will be able to distribute
the data between threads in an optimal fashion that minimizes the number of shuffles

performed for a single memory access.

70

Bibliography

[A. 10]

A 11]

[A. 13]

[AS98]

[B. 07]

B. 14]

[BSGH'06]

[C. 12]

A. E. Cohen and K. K. Parhi. GPU Accelerated Elliptic Curve
Cryptography in GF(2™). In IEEE 53rd International Midwest
Symposium on Circuits and Systems, pages 57—60, Aug 2010.

A. Davidson, and J. D. Owens. Register packing for cyclic reduction:
A case study. In Proceedings of the Fourth Workshop on General
Purpose Processing on Graphics Processing Units, pages 4:1-4:6. ACM,
2011.

A. Magni, C. Dubach, and M. F. P. O’Boyle. A Large-scale Cross-
architecture Evaluation of Thread-coarsening. In Proceedings of the
International Conference on High Performance Computing, Network-
ing, Storage and Analysis, pages 11:1-11:11. ACM, 2013.

Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a
new characterization of NP. Journal of the ACM, 45(1):70-122, 1998.

Preliminary version in FOCS '92.

B. Chapman, G. Jost, and R. V. D. Pas. Using OpenMP: Portable
Shared Memory Parallel Programming (Scientific and Engineering
Computation). The MIT Press, 2007.

B. Catanzaro, A. Keller, and M. Garland. A decomposition for in-
place matrix transposition. Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages
193-206, 2014.

Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan,
and Salil Vadhan. Robust pcps of proximity, shorter pcps, and
applications to coding. SIAM J. Comput., 36(4):889-974, December
2006.

C. Su, and H. Fan. Impact of Intel’s new instruction sets on soft-
ware implementation of GF(2)[x] multiplication. Inf. Process. Lett.,
112(12):497-502, June 2012.

71

D. 82]

D. 1]

[Din06]

[E. 96]

[E. 08]

[Eis50]

[F. 95]

[Fog16]

G. 98]

[G. 14]

[G. 15]

[Gao93]

D. F. Elliott, and K. R. Rao. Fast Transforms: Algorithms, Analyses,
Applications. Computer Science and Applied Mathematics Series.
Academic Press, 1982.

D. G. Cantor, and E. Kaltofen. On fast multiplication of polynomials
over arbitrary algebras. Acta Informatica, 28(7):693-701, 1991.

Irit Dinur. The PCP theorem by gap amplification. In Proc. 38th
ACM Symp. on Theory of Computing, pages 241-250, 2006.

E. D. Win, A. Bosselaers, S. Vandenberghe, P. D. Gersem, and J.
Vandewalle. A fast software implementation for arithmetic operations
in GF(2"). In Proceedings of the International Conference on the
Theory and Applications of Cryptology and Information Security:
Advances in Cryptology, pages 65—76. Springer-Verlag, 1996.

E. Ben-Sasson, and M. Sudan. Short PCPs with polylog query
complexity. STAM Journal on Computing, 38(2):551-607, 2008. Pre-
liminary version appeared in STOC ’05.

G. Eisenstein. Lehrsatze. Journal fiir die reine und angewandte
Mathematik, 39:180, 1850.

F. Ergiin. Testing Multivariate Linear Functions: Overcoming the
Generator Bottleneck. In Proceedings of the Twenty-seventh Annual
ACM Symposium on Theory of Computing, STOC ’95, pages 407-416,
New York, NY, USA, 1995. ACM.

A. Fog. Lists of instruction latencies, throughputs and micro-operation
breakdowns for Intel, AMD and VIA CPUs. Available at http:
//www.agner.org/optimize/instruction_tables.pdf, 1996-2016.
[Online; accessed 28-Mar-2016].

G. Seroussi. Table of low-weight binary irreducible polynomials. In
HP Labs Technical Reports, pages 98—135, 1998.

G. Shay, and M. E. Kounavis. Intel(R) carry-less multiplication
instruction and its usage for computing the GCM mode - rev 2.02.
Intel Corporation, April 2014.

G. L. Steele Jr., and J. B. Tristan. Using butterfly-patterned partial
sums to optimize GPU memory accesses for drawing from discrete
distributions. CoRR, abs/1505.03851, 2015.

S. Gao. Normal bases over finite fields, 1993.

72

http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf

[Gau66] C. F. Gauss. Nachlass: Theoria Interpolationis methodo nova tractata.
(German/Latin) [deduction: Interpolation theory by a new method].
In Carl Friedrich Gauss, Werke, volume 3, pages 265-303. Konigle-
ichen Gesselschaft der Wissenschaften, Gottingen, Germany, 1866.
Posthumous publication of undated, and previously unpublished, work
done about October/November 1805, according to historical evidence
presented in [HJB85]. Gauss’ work predates Fourier’s work of 1807
on the representation of functions as infinite series of trigonometric
functions, but due to opposition by Lagrange, Fourier did not publish
it until 1822.

[Hen88] K. Hensel. Ueber die Darstellung der Zahlen eines Gattungsbere-
iches fur einen beliebigen Primdivisor. Journal Fur Die Reine Und
Angewandte Mathematik, 1888:230-237, 1888.

[HIB85] Michael T. Heideman, Don H. Johnson, and C. Sidney Burrus. Gauss
and the history of the Fast Fourier Transform. 34(3):265-277, Septem-
ber 1985.

[I. 60] I. S. Reed, and G. Solomon. Polynomial codes over certain finite
fields. Journal of the Society for Industrial and Applied Mathematics,
8(2):300-304, 1960.

[J. 65] J. W. Cooley, and J. W. Tukey. An algorithm for the machine
calculation of complex fourier series. Math. Comput., 19:297-301,
1965.

[J. 86] J. L. Massey, and J. K. Omura. Computational method and apparatus

for finite field arithmetic. US patent number 4587627. May 1986.

[J. 98a] J. Daemen, and V. Rijmen. AES proposal: Rijndael. Available at
http://jda.noekeon.org/JDA_VRI_Rijndael_V2_1999.pdf, 1998.
[Online; accessed 28-Mar-2016].

[J. 98D] J. L. Massey. The Discrete Fourier Transform in Coding and Cryp-
tography. IEEE Inform, 1998.

[J. 03] J. Von-Zur Gathen, and J. Gerhard. Modern Computer Algebra.
Cambridge University Press, 2 edition, 2003.

[J. 12] J. Luo, K. D. Bowers, A. Oprea, and L. Xu. Efficient software imple-
mentations of large finite fields GF(2") for secure storage applications.
Trans. Storage, 8(1):2:1-2:27, February 2012.

[J. 13] J. S. Plank, K. M. Greenan, and E. L. Miller. Screaming fast Galois
field arithmetic using Intel SIMD instructions. In 11th USENIX

73

http://jda.noekeon.org/JDA_VRI_Rijndael_V2_1999.pdf

K. 12)

[Kil92]

[KO63]

[L. 88

[L. 90]

L. 91]

[LRRY78]

[M. 05]

[Mat08]

[Mic94]

Conference on File and Storage Technologies, pages 298-306, February
2013.

K. Leboeuf, R. Muscedere, and M. Ahmadi. High performance prime
field multiplication for GPU. In IFEFE International Symposium on
Circuits and Systems, pages 93-96, May 2012.

J. Kilian. A note on efficient zero-knowledge proofs and arguments
(extended abstract). In Proceedings of the 24th Annual ACM Sym-
posium on Theory of Computing, May 4-6, 1992, Victoria, British
Columbia, Canada, pages 723-732, 1992.

A. Karatsuba and Y. Ofman. Multiplication of Many-Digital Numbers
by Automatic Computers. Doklady Akad. Nauk SSSR145, 293-294,
1962. Translation in Physics-Doklady 7, 595-596, 1963.

L. Babai, and S. Moran. Arthur-merlin games: A randomized proof
system, and a hierarchy of complexity class. J. Comput. Syst. Sci.,
36(2):254-276, April 1988.

L. Babai, L. Fortnow and C. Lund. Non-deterministic exponential
time has two-prover interactive protocols. computational complezity,
1(1):3-40, 1990.

L. Babai, L. Fortnow and L. A. Levin, and M. Szegedy. Checking
computations in polylogarithmic time. In Proceedings of the Twenty-
third Annual ACM Symposium on Theory of Computing, STOC ’91,
pages 21-32, New York, NY, USA, 1991. ACM.

B. Gold L. R. Rabiner and C. K. Yuen. Theory and application of
digital signal processing. IEEE Transactions on Systems, Man, and
Cybernetics, 8(2):146-146, Feb 1978.

M. J. Mohlenkamp. A fast transform for spherical harmonics. Journal
of Fourier Analysis and Applications, 5(2):159-184.

M. Arabi. Comparison of Traditional, Karatsuba and Fourier Big
Integer Multiplication. B.Sc. Thesis. University of Bath, May 2005.

T. Mateer. Fast Fourier Transform Algorithms with Applications.
PhD thesis, Clemson, SC, USA, 2008. AAI3316358.

S. Micali. CS proofs (extended abstracts). In 85th Annual Symposium
on Foundations of Computer Science, Santa Fe, New Mexico, USA,
20-22 November 199/, pages 436453, 1994.

74

[Mie08]

[nVil5)]

[P. 15]

R. 89]

[R. 97a]

[R. 97b]

[R. 02]

[S. 89]

[S. 9]

[S. 10]

[S. 11]

[S. 16]

[SS71]

Thilo Mie. Polylogarithmic two-round argument systems. J. Mathe-
matical Cryptology, 2(4):343-363, 2008.

nVidia. Kepler Tuning Guide. http://docs.nvidia.com/cuda/
kepler-tuning-guide/index.html, 2015. [Online; accessed 26-Jan-
2016].

P. Enfedaque, F. Auli-Llinas, and J. C. Moure. Implementation of the
DWT in a GPU through a register-based strategy. IEEE Transactions
on Parallel and Distributed Systems, 26(12):3394-3406, Dec 2015.

R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone, and R. M. Wilson.
Optimal normal bases in g f(p™). Discrete Appl. Math., 22(2):149-161,
February 1989.

R. Lidl and H. Niederreiter. Finite Fields. (2nd ed.), Cambridge
University Press, 1997.

R. Lidl, and H. Niederreiter. Finite Fields. Number v. 20, pt. 1
in Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 1997.

R. D. Kent, and C. Read. The Acoustic Analysis of Speech. Singu-
lar/Thomson Learning, 2002.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity
of interactive proof systems. 18(1):186-208, February 1989.

S. Arora, C. Lund, R. Motwani and M. Sudan, and M. Szegedy. Proof
verification and the hardness of approximation problems. J. ACM,
45(3):501-555, May 1998.

S. Gao, and T. Mateer. Additive fast fourier transforms over finite
fields. IEEFE Trans. Inf. Theor., 56(12):6265-6272, December 2010.

S. Kalcher, and V. Lindenstruth. Accelerating Galois field arithmetic
for Reed-Solomon erasure codes in storage applications. In IEEFE
International Conference on Cluster Computing, pages 290-298, Sept
2011.

S. Ashkiani, A. Davidson, U. Meyer, and J. D. Owens. GPU Multisplit.
Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 12:1-12:13, 2016.

A. Schonhage and V. Strassen. Schnelle multiplikation grosser zahlen.
Computing, 7(3-4):281-292, 1971.

75

http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html
http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html

[V.] V. Volkov, and J. W. Demmel. Benchmarking GPUs to tune dense
linear algebra. In International Conference for High Performance

Computing, Networking, Storage and Analysis, Nov 2008., pages 1-11.

[V. 03] V. Shoup. NTL: A library for doing number theory. Avilable at
http://www.shoup.net/ntl, 2003. [Online; accessed 28-Mar-2016].

[Wel67] P. D. Welch. The Use of Fast Fourier Transform for the Estima-
tion of Power Spectra: A Method Based on Time Averaging Over
Short, Modified Periodograms. IEEE Transactions on Audio and
FElectroacoustics, 15(2):70-73, 1967.

[Wik] Wikipedia. Bit slicing — Wikipedia,. [Online; accessed 27-Mar-2016].

76

http://www.shoup.net/ntl

DOPIN PN N NTIAYA IINADI WX GIIYN PNIONY 190N NV K99 N¥MIPN NN D9
GPU -2 DN NSNNY NTYPHN "D MIN POLR” NNXIPIN NNIDY TPRNDIY FPNNTINN
-1 IMLVPVL>IINT DNRIPININ TV 29 100N DAXM 121 DMN DD NILVKA TP

R INNTINN YIMDY MYSNND YPRNY 1177 OMN GPU

iv

99,9011 NN IR YN J9IND MY 12T, PN VNI HNANN JPON ©¥I7TN U5 NN
AN IWON NTHT M¥APHN ,DXVIN NYIINY DIYY GIN DY MNP OOV DVDOY
YAt 502 TaYN 90 IWNRD OXTIYN JY FPNIMIN D20 19010 v GPU -5 "poa” NP
VIY TIN DAY "GMun NI0R” 191 TIY DTN L TayN 591 DN SY ;v N P
OP NN DINY PO YN GRYY 21230 IMND DVIN DD NMPRNN PO MNP
199 NMAX MTTH DPIND NINTIN MTYWI D99 VIdN Iy MYIND MUY 12 WD) 10N
NPNNA VPN N¥NI NI, TPINIDI NN 1IN ¥ GO0)2 YV UYNND 27NV
NIINN TPITPNY IYNN TPIDNN SW NNIN MDA PON AN VI TPIDNN SV NN
NN VTP MNP VI PVITNT NYINI 12 YIP IXM R NTIAYI TPVIN N TPINRDIN
79 GUND NPION SY NITO T DY NYNINN R NNVPVLIIINT TNONN R NIDND YN VD
STI-292 INAN PIONT NIPAYN NZY LN NRY DXAWSN POY NYNIN VP NJIAPN PN
PION VD NN P JY NINX LPIVAN IMNND DPRY DOVIN PA NNYPN YNIT 11 NI
POY GO IR DX VNPT HY MAPIN TPIDNNA LIPN NN YT VIN T HY NN
-3 MAININ JY HNWII 21730 DXVIN SV YINIZIN NIONRD YL ToNNIY NN NIYY v
PIDRNN INOIPIY PP IINT 1D R AP NPNY IO "M NN PNIRIN MNP
P2 NDIND NI NI SY DT 1900 JY MIPNPNINIILY 19IND NYNINN ORI
NP MNNAT APNPRINIIL JY 29 7900 WIT? WD R MPINT TMIXIPIN MAINON ONX

M IORAOIN Y 12 TMYHN 991 DO 903 N GPU -2 71N IInnn vimn
TN 5Y WYY MPPTIL WY-IYOY %9 DX INSNDY GPU -N 9v Nionn . mMaarn
PPN NI YIPHNL DD 1TV PN 9955 widn vy GPU -3 mMInnnm NN wnnd
NN DMIDN 98122910 NTYA DIDR IV 98T S 993 9Y TPNINN DN NN 991 1)
A0 NTYA DIDN Y JY 99971 YR YN YIDPNIY MZIWAN 190N ¥ 1Y VTN MIPIN
IYPIT NODN ,79-299 j7I19-KN DIPI9L DANND DONWN DIRTPHRN 190N 1PN Pa 19N
5593 T DINIDNLIO VI PPV YIDHNI DN PYNNIVAY DY7>19-NN DRI
VI TN T35 DININ KYNL WY DNTIY DIPHN INPN I35 DOND DWW DNTPN
DIOY MIYYN TN 191 DIIRDILIOY DRI DP9 DPINPI DIMPNY Iy W1
SY YIDNN YN DIMPID YNNI 29010 91T MNP NTY 931 DNPPY WK 197990

CPU -1 9950 wyno 0/ 971 7702 1) NTPAN 1M XM010 1TWa 9990

DONYNIY PNIINT DNY DLIN SY IMYIN 1I9IND TWNI DUYIY INY 720910 N0 7NN
PINIIN PN D IMPRY DAIKP PR SWIONA WP DN D 1YW N¥MIP NN
PN YYD IMDN NTYA DIDRI NN IR N¥Y AT 109 TIPOVN 1) PIN MDY
70 ,0N9Y DMINA MLONY DVIN N¥NIP NN ST Y DIIAWIN DIIDRY WAND) W1
JINIZIN PINT T TV 27 190N TIONTI PRI NP TNIVH NKLI 2% MIPNT NONY
TINIAPN NN NN LVIN DY NXIPA DION LIN TY NI XYY 1PN GIvD 1n Sy
NN YR WIS TNNT VNINN R TIT2 . TAvNN SV (shuffle) 232990 NP2 DWHRNYN

290N NTYA DN Y 9995 YT

-1 N GPU -1 D»ND MTWA 9950 YN NN YNNI MHINN IMYSNNA NN NIYN
NYTN POLN TV NPYY EINZN GIIYN NI NPOIN MR MDY ININN TO N7
-D) DLN P2 ONIY NIPYY DOIN HY DWINL DY NPHY ST 9y TN 19N

iii

N NTIAY NONA QDN D DI 1222910 1N VNN 11PN D33 D09 i Widdnng mmn
-Pa Y7 N0 5y .GPU - CPU ,DIMOND NI JD2 MNY MNMVPLIIIN PNV 1INI)
DPDVXTN PN MINNN MNIPINION YINI NP NN DORD INPNY PN NIV

290 NTYA 5937 YTH NN 3T TO NN NN DNNND ¥ OPND MTY Jyn

SN PO TMINNN IWINT DINIPININIA YN0 NTYA 7957 YITTN NNIN IR TO DINNY
YT DY DUV DYJ9DN 1901 DINKY NN, NINYNIN .D¥DIT P11 Mt IPNNI NYYI NPV
NN D93 NI INAT YITTN RN TO DINDN NN 2IWN) DIPININD

DIPIMINI YHRNWYNZ VIMN YN¥IZ PIN OIPIMONNY D791 19010 NN DNNND N Iy
VN N2 DANIN-INN OYN PN TR 2NN NN Y¥IT IWONND TN 2010 MY DONDY DY
2y DIPIMIND WYY DMPY 19010 DHANM R NTIAYA 290N NTYWA PPN ININ-NN 5

DNYID DXYON DXIANIN-XNN J¥N 2WPNN NN YNIT 1D IWIND 1IN

NI TN 9D 0I5 pUITIVON DDA DHANPN DPNY PINDN MDD NTYA DN
DYTAW 12 90N NTYN DY NANINN TNTTNR NIVZ IMITI IINN N DN DTN DY DIV
ON PN 999 Y8IY NN DY INWHI 2>719-R DIPDID NTIN MYNINND MWD 92 M NTYA
NI DY INTIMN MWD YW 191 DIMPDN JYW 79310 MW JY 209 NI TNN 7PN)9
D279 DP9 WNINYNY NOUSNN 72719 X DINPDIN INTINN NYWD NN MW Y819
U7 DAND DNV OPNTPNY DIPION MINYN NZIN DX "NNIN" XIP» DN "DonnIn”
D91 MNYN NPIN SY DANN NNYN OTPNT ,)2MD VD, DIPNON THATH TN M)
N DTV WWRIN WYNIY DP9 DOUNNIYN 12 NIPNRL .DION S IMIT NN ¥y2IPN
TAYNN NTIPO MYNNNL MDY 1D9NY ,DIMPND 993 MZWI NIV WNNYND 110 T¥D
NTVA D90 YNAY DYYNRY T52) "N’ D119 0TI DYV YNID 1 DY DD Nonnv
TR TN MNND NONNW)0 M MDY OMPNY 990 MY VIOYW MYNNNI 29D
PN YIPDNN DNV PINNN DN MTYWA DINNIN DPI19-K DP9 HY DNV
T2 IPPANINPO MNXNN 1) XD CPU -N NMOUPVLIIINA TPDVITRD 7PN NWNN HYW
O MY WIDNOY NN NDNYYY NIYYN N NTIAY DY NNMOND NINK 1PNY MO 190N
-Jj7 BN OPININA DXIYY DY NPD DNT) DV JY IPININPD NI NN MPL)
DY PIDNA DPMIN MMPNI DINNNIY DYDY 1901 SV 7PXPNS DN DIMNON DOV
TNMYN NHVLKRN PIDR MNIA NMIIINNT TVIM TAYNT P> YAt N2W PNIDR WX Mdpno

Tayna

22PN MPANINPO VI R NTIAYA 3N CPU -N IMOPLIINGD NOYY SWPN MIApya
SPNNRN TIRNIN NN PXIY 2397 TPDVITND 7NN NN oW GPU -0 nMOpuoINg
SV TIND)T 190N ¥ R NNMLPYIINA .GPU -n IMOPLIIIN TV IOV DTN 1PN)
-IND 9900 .DXIMN TINA IIWIY 20D NN W VN 737 ,"DVIN' MXIPIV 2N MTNY
DOPNK DVIND 52310 DY Y0I9N NI MIYI 513> LINY NIDNN TO 1291 SN D)
DUYN TRN 9N NS NXNIPN .DXVIN DY) DVY NP0 NN JIWD MNP’y
DOVIN N2 TPION NVND NTIPON NINN NN DOYNIN N¥IPA ©DVINN 90 NI 1!t 5I2
NTIPON MY 7PINND W 12 NIPRA DUNY DT NN IR DYSIN X7 N¥IAPN NIIND
WXL DOVIND 92 12 2D NNN NNIPN NIMND DOVIN P2 TPIONI VAN W7 DIV

ii

98PN

PON MIPNY TON INDY DAY DYNND 2399 SNN TIPNN 7PN TINNN YIDNL DN
“WPOXT PN MIDNNY INT 1) OO0 1IN SOTINM SYTHN NN P TI9) ONYa
5S¢ MZINA DIPIN MTPN N9991 YW XMD) 1907 DITDI DINNA SYW N¥» NPHRIN TPV
PPTA 93N TP 190N 9y 19N S1PTINN TV TINA DINSID TY NN DIPDIN MINYN
MTY 990 DMPNA SY TPV IPOIPOT 7PN IIDANI TN DN THIITH 1-2
INIPOY GO YIPY PNND-TT TITP TIDNT DY DHPIION DVIDYI K¥N) D0
TNINP TSN TNTY TMNINT TN SY MIPS NI R IPNN NTIAYT 220 WN XN
URTID TINIPIN TINN TIWYY "HY21” IINIPIN TINN TYY P2 DHYPIN YN D700
MP2N TPIDIN MY NN YRS PIY DON TPIDNT VYR ,TPIIN MM N XTIN
TIN DO DXTYSN DONT NINY TY IN NNPRYY TY TYNI S1PY 110100 1IN I 1N
NI 3 NIN7 N2 MYNHNDY PMNANDN J9IND MM 191 INNS XTI SN 1IN0 VIS
NTIN TN 2WPNNN 22PNNY VY9N KN NTIND NYWY VM APNHN TIN Y 1IN
NTWON NNNN NPY ToNNA DMN TMNTY N 9325 DRN DTN NN NN 229 191N
03 NTINY 1YW YT TITP NIWN TPIDTIN NI TNRT 1NN PIN NN IPYN I8N
DYDY PNDN DD MTY J¥0 7P ND TIBNN MYSHNI AWINND TIDPN INIINN NNO
DN YN JYW PN RN 21220 INNDN D AN MIPON NNDN WYY THPPTIN
MY YIS WARY 10N ,OPPOND DXINTIDN SNIN TV DIPNON TV 1N 15va
-1 PPYRIL PN PN TINNN DPND MTY Y10 NIPVIPDXT HNS ININTIN MYNHONI
TON NP OYNY SV 1993 NNIN-NN SY DNPH 5Y 1NN 1 .(NIPI9I) IPDLPINV
590 PP SWIVY PR ,DYNID MITYY L9 DXNDN TTYS ,ING DY WD 1TV W9
IPDOXIN 7PN MIBNN NPDOXTR TPND IIRNNA PIDPN 5NN T2 THXY NIW 170
TAYPHI MIDPRTN IPDVITN PN MINTN NV NDN MNIN-TIN SY JIYP YY MOIANN
PYH 2 PIXON DD TNITYA DIN)PDVITN NI OI¥A DN IXR TV PY DY MTYY
DPVOYTNR PN TIINN PN Y NN .2 Y N7 RIIY JTH 990 IPNN MNIn
TR RYIA DNIPIMINR 190N MOND NYN DMK DINYN NIV IHN DYOD MTYI
SN MPON NNN_TYTH TIK DN DPRY DI 12237 DRIPININ DMK 5Y DUIDN
D993 JYHOVIVIDON 1IN >TH M2 IADN DYNT PN DRIPIMIRY NI TI9 TP
DINK DNIPMIN NN o 27 NN DONY N D99 ¥ 19V NPPTIN 290 NTYA
DYNT TR 910N NTYA D997 SY HOIVION MY 1O 190N DIM) DINN WY
YD DTN MY PN YW TPYRIN INIVN TIND TIPN0N MNIN Y3 7P W NTVIY
9y 2 PNON DNPAID MTYL DHPPON AN SN I¥N IPDVITN DN ININTIN SY D

Technion - Computer Science Department - M.Sc. Thesis MSC-2016-15 - 2016

NONPOL PPOLYIIASN P NOMID NYY-1A IOX NOMID DY DNPNINA YY) NN
AVNnn Yo

-51VYNA N2XTIN TPODIN NNRNN JY NIV NNIY-1A NWIN DTN W'Y NPT DTN MIN
RARNA

Technion - Computer Science Department - M.Sc. Thesis MSC-2016-15 - 2016

NI9ANN 210 NP 79Yapn 0INTIIAYK
N1727WIIX 717719

PPN 2Y NN

ININN NZAPS MWITN DY 2PN 1M DYDY
AVNNN VTN

okrklal B fela

NPT MZNOL ON --- PDLN VIDZ YN
2016 OV noMn Y'YUNN NN

Technion - Computer Science Department - M.Sc. Thesis MSC-2016-15 - 2016

NI9ANN 210 NP 79Yapn 0INTIIAYK
N1727WIIX 717719

okrklal B fela

	List of Figures
	List of Algorithms
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Finite Extension Fields' Elements and BasesDefinitions are based on Gao93normalbases
	2.1.1 Definitions

	2.2 Polynomial Bases
	2.3 Normal Bases

	3 Theoretical Discussion
	3.1 Fast Multiplication in GF(2n)
	3.1.1 Generalization for Optimized Multiplication in k-Gapped Finite Fields
	3.1.2 Finding a k-Gapped polynomial

	3.2 Generalizing Gao & Mateer's Additive FFT for affine subspaces
	3.2.1 Taylor Expansion
	3.2.2 Additive FFT in Binary Fields Over Affine Subspaces

	4 CPU
	4.1 Finite Field Arithmetics
	4.1.1 Element Representation on CPU
	4.1.2 Finite Field Library API
	4.1.3 Implementation of multiplication in GF(264)

	4.2 Parallel FFT and inverse FFT implementation

	5 GPU - Introduction of Register Cache
	5.1 Introduction of GPUsBased on nVidia's white papers of the Fermi and Kepler architectures. (http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf) (http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf)
	5.2 Intra-warp register cache
	5.2.1 Example: 1D k-stencil
	5.2.2 Analysis
	5.2.3 Limitations

	6 GPU - Finite Field Multiplication
	6.1 Sequential finite field multiplication
	6.1.1 The CPU CLMUL instruction
	6.1.2 Sequential polynomial multiplication

	6.2 Parallel polynomial multiplication
	6.2.1 Bit slicing
	6.2.2 Parallel polynomial multiplication using chunks

	6.3 Polynomial multiplication using register cache
	6.4 Extending to polynomials of larger degrees
	6.4.1 Performance comparison of the different designs
	6.4.2 Application to larger fields
	6.4.3 Using shared memory only for the output

	7 Implementation of the FFT algorithm on GPU
	7.1 Outline of the Implementation
	7.2 Set Up for GPU
	7.3 Shift Phase
	7.4 Taylor Expansion Phase
	7.5 Shuffle Phase
	7.6 Linear Evaluation Phase
	7.7 Merge Phase

	8 Performance
	8.1 FFT and Inverse FFT

	9 Conclusion and Open Questions
	9.1 Conclusions
	9.2 Some open questions

	Bibliography
	Hebrew Abstract

